

Analyzing GPU-accelerated Applications with HPCToolkit

John Mellor-Crummey

Department of Computer Science Rice University

15 November 2021

Outline

- Describe use of HPCToolkit for GPU-accelerated applications
- Status for GPU vendors
- Demo on NVIDIA GPU
 - operation-level monitoring
 - PC sampling
- Ongoing work

hpcrun - Measure CPU and GPU execution

- GPU profiling
 - hpcrun -e gpu=xxx <app>

// xxx ∈ {nvidia,amd,opencl,level0}

- GPU tracing (-t)
 - hpcrun -e gpu=yyy -t <app>

// yyy ∈ {nvidia,amd,opencl}

- GPU PC sampling (NVIDIA only)
 - hpcrun -e gpu=nvidia,pc <app>
- CPU and GPU profiling and tracing
 - hpcrun -e REALTIME -e gpu=yyy -t <app>
- Use hpcrun with job launchers
 - jsrun -n 32 -g 1 -a 1 hpcrun -e gpu=xxx <app>
 - srun -n 1 -G 1 hpcrun -e gpu=xxx <app>
 - aprun -n 16 -N 8 -d 8 hpcrun -e gpu=xxx <app>

HPCToolkit and GPU Software Stacks

Measurement for GPU-accelerated Supercomputers

Measurement interfaces

- Hardware
 - CPU hardware performance monitoring unit
 - GPU hardware counters and PC sampling
- Software
 - Glibc LD_AUDIT for tracking dynamic loading of shared libraries
 - Linux perf_events for kernel measurement
 - GPU monitoring and instrumentation libraries from vendors

Multiple measurement modalities and interfaces

- Sampling on the CPU
- Callbacks when GPU operations are launched and (sometimes) completed
- GPU event stream, including PC sampling measurements

hpcstruct - Recover Structure for GPU-accelerated Programs

- Analyze all GPU binaries in <measurements-dir>
 - hpcstruct [--gpucfg yes] <measurements-dir>
 - "gpucfg yes" means recover GPU loop nests, calling context information
 - only useful on NVIDIA platforms at present: no fine-grain measurement from other vendors
 - use with care on large binaries: very costly because of NVIDIA's lack of necessary APIs
 - adds a program structure file to the measurement directory for each GPU binary

Step 4:

hpcprof/hpcprof-mpi - Correlate Measurements with Code

- Use a single process to combine performance data
 - hpcprof <measurements-dir>
- Use multiple processes to combine large-scale performance data
 - jsrun -n <np> hpcprof-mpi <measurements-dir>
 - srun -n <np> hpcprof-mpi <measurements-dir>

Step 4:

GPU Monitoring Capabilities of HPCToolkit

Measurement Capability	NVIDIA	AMD	Intel
kernel launches, explicit memory copies, synchronization	callbacks + activity API	callbacks + Activity API	callbacks
instruction-level measurement and analysis	PC sampling of GPU code	Future*: PC sampling (as seen on Github) of GPU code	GTPin; Future*: instruction-level measurement of GPU code
kernel characteristics	Activity API	(available statically)	(unknown)

Significant support in master branch

Prototype support in master branch

Prototype support in master branch

Demo: Measure and Analyze LLNL's Quicksilver (Video)

Emerging Work: Large-scale LAMMPS

Work in Progress

GPU Enhancements

- Intel GPUs
 - Measurement support for Intel GPUs using OpenCL and Level 0
 - Fine-grain measurement using GTPin
 - Fine-grain attribution using binary analysis
- AMD GPUs
 - Binary analysis and instrumentation for fine-grain measurement and attribution
- NVIDIA GPUs
 - New support for NVIDIA inlining info distribute our patches to the community
 - Reduce fine-grain measurement overhead with low-overhead PC sampling (CUDA 11.3)

Scalability

• finalizing new version of hpcprof-mpi with massive threading and sparse formats

User interface

- overhaul metric view to enhance performance and scalability
- associate trace lines with metadata (node, GPU, MPI rank, GPU stream ...)
- improve presentation of the many GPU metrics

Reliability and Completeness

