e ec21

St.Louis, [science
MO | & beyond.

—

Sampling-based Performance Analysis with HPCToolkit

Measurement and Analysis of Unmodified, Optimized Applications

John Mellor-Crummey

Department of Computer Science
Rice University

15 November 2021

Outline

Sampling-based call path profiling

Using HPCToolkit on a single node

Demo data collection and profile analysis

Demo trace analysis

Pointers to additional information about measurement

Sampling-based Performance Measurement

» Periodically interrupt each thread in an application

— interrupts are triggered by a “sample source” as a metric reaches some pre-determined
threshold

— example sample sources
o timer
— a thousandth of a second has passed
» hardware counters
— five million instructions have completed
— a million cache misses have occurred
« Why sampling?
— controllable overhead
— avoids blind spots and minimizes systematic error

Attribute Metrics to Call Paths

« When a thread’s timer or HW counter reaches some predetermined threshold T
* interrupt a thread
» unwind its call stack

Calling context tree
Call path sample

return address
return address

return address

instruction pointer

» charge T to the thread’s current calling context

EEEEEEE

= \(C\\)F’ Overhead proportional to sampling frequency, not call frequency

HPCToolkit Quickstart

% hpcrun myapp
profile CPUTIME of application and deposit results in hpctoolkit-myapp-measurements

% hpecstruct hpctoolkit-myapp-measurements
analyze application binary and all dynamically loaded libraries involved in the execution

% hpcprof hpctoolkit-myapp-measurements
analyze measurement data and correlate it to source using program structure from hpcstruct

% hpcviewer hpctoolkit-myapp-database

Video: Using HPCToolkit to Measure an OpenMP Program

w™ Applications Places system @ (v 7 B B B Thu Oct 21, 03:44

hpcviewer (on ufront.cs.rice.edu)

[johnmc@ufront luleshl$ | File View Filter kelp

hpestruct hpctoolkit-lullFrrofile: luleshz.0 ==
begin concurrent an|
begin concurrent an|
begin concurrent an|
begin concurrent an|
begin concurrent an| -
begin concurrent an| 1 l

begin concurrent an pragma omp parallel for firstprivate(numElem, hourg)
begin concurrent an| 3 for(Index t 12=0;i2<numElem;++12){

= i Real t *fx local, *fy local, *fz local ;
E:gl: Z::Z:::::: :: 7 Real t hqfx[8], hgfy[8], hgfz[8] ;

lulesh.cc 52

AR R R AR AR AR R AR AR AR AR AR

compute the hourglass modes =/

begin concurrent an| .o Real t coefficient;
begin concurrent an|
begin concurrent an| 77 Real t hourgam[8][4];

begin concurrent an| Real_t xd1(8], yd1(8], 2d1(8] ;

begin concurrent anf ;,, const Index t *elemToMode = domain.nodelist(i2);
end concurrent anal| . Index t i3=8+i2;

end concurrent anal| o Real T volinv=Real t{1.@)/determii?l:

end concurrent anal| rop-down view Bottom-up view Flat view

end concurrent anal

end concurrent anall r 3 6 fEM A A
end concurrent anal
end concurrent anal 'I
end concurrent anal| 4 Experiment Aggregate Metrics 1.11e+62 160.6% 1.11e+02 160.6%
end concurrent anal| P [I] do spin 1.62e+61 14.7% 1.62e401 14.7%
end concurrent anal| 4 CalcFBHourglassForceForElems(Domain&, double*, double*, double*, double*, double*, double*, double*, double, ... 2.16e+61 19.6% 1.39e401 11.7%
end concurrent anal| P €8125: gomp E“d}la'l [Libgomp.so.1.0.8] 1.90e+081 17.2% 1.14e¢+01 10.4% °
end concurrent anal 4¢2178: GOMP | Llel [libgomp.so0.1.8.9] 2.66e+00 2.4% 1.53e+00 1.4%
end concurrent anal 443782: (I] CalcFBHourglassForceForElems 2.66e400 2.4% 1.53¢400 1.4%
end concurrent anal 44@1844: [I] CalcHourglassControlForElems 2.66e+60 2.4% 1.53e408 1.4%
wsg: end concurrent anal 4431893: [I) CalcVolumeForceForElems 2.66e+008 2.4% 1.53e408 1.4%
L johnmc@ufront luleshl$ 4€31122: [I) CalcForceForNodes 2.66e400 2.4% 1.53e400 1.4%
hpeprof hpctoolkit-lules 44@1235: [I] LagrangeNodal 2.66c+00 2.4% 1.53¢+00 1.4%
wsg: STRUCTURE : /home/ jo 4432689: (I] LagrangeLeapFrog 2.66e+00 2.4% 1.53e408 1.4%
Line gt ’:‘°"‘e/‘!° 4432748: main 2.66e+00 2.4% 1.53¢+00
STecTba s paosarde <program root> 2.66e+00 1.53¢+00
STRUCTURE : /home/ jo| » EvalECSForEiens(Domaing, double®, int, int*, int) [clone . omp fn.0) 8.37e+00 7.6% 5.640+08
STRUCTURE - susr/slib| P CalcHourglassControlForElems(Domaing, double*, double) [clone . omp_fn.e) 1.32e461 12.6% 6.63¢408
msg: Populating Experime| P [I] CalcElemFBHourglassForce 5.66e400 5.1% 5.66¢408
[johnmc@ufront luleshl$ » [I] VoluDer 5.57e+08 5.6% 5.57e408
hpcviewer hpctoolkit-lul| ¥ CalcElemShapeFunctionDerivatives{double const*, double const®, double const*, double (*) (8], doubler) 4.46e400 4.0% 4.46e400
Java version 11 » CalcMonotonicQGradientsForElems(Domain&) [clone . omp fn.9] 4.70e406 4.2% 4.30e408 3.9%
!Redlrect standard error » (I] SumElemFaceNormal 3.78e+00 3.4% 3.78e408 3.4% a
P CalcHonotonicQRegionForElems(Domain&, int, double) [clone . omp fn.8) 3.43e+080 3.1% 3.35e400 3.0%
b CalcPressureFarFlems(doubles. doubles. doubles. double*. doubles. double*. double. double. double. int 3280400 3.0% >.a5e40R 2.7%

@ [Teminal] || ™1 johnmc@ufront:~/exa... || [hpcviewer (on ufront....

o=
\\ EXASCALE
) COMPUTING
\ PROJECT
S

Understanding Temporal Behavior

* Profiling compresses out the temporal dimension

— Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
« What can we do? Trace call path samples

— N times per second, take a call path sample of each thread
Organize the samples for each thread along a time line

View how the execution evolves left to right
— What do we view? assign each procedure a color; view a depth slice of an execution

Processes

Time

Video: Using HPCToolkit to Analyze the Trace of an MPI Program

000 hpcviewer
[F7g profile: flasha {. Trace: flashal @ PR €944 H-E- T =B
Main view | Depth: 4 ‘ ¢ Ea
Time Range: [33s, 178s] Rank Range: [Rank 17, Rank 108] Cross Hair: (87s, Rank 28)
| Call stack} isti ‘
]
[\ flash
driver_evolveflash
hydro
hy_ppm_sweep

grid_fillguardcells
amr_guardcell
amr_1blk_guardcell

mpi_amr_1blk_guardcell_c_to_f
amr_1blk_cc_prol_gen_unk_fun
. amr_prolong_gen_unk1_fun

120s 130s 1405 1505 160s 1

n
T T T T T T T
Depth view | Summary view ﬁ-{- Mini map
i i L L L L 4] U ol i T ! et) T
- | il i =

o=
\\ EXASCALE
) COMPUTING
\ PROJECT
S

See Slide Deck for Additional Details about Measurement

» Measuring applications when using a job launcher
» Specifying sample sources

— timers

— hardware counters
e Controlling measurement frequency

— automatic

— frequency-based sampling

— period-based sampling

Measuring Performance with hpcrun

 Profile a dynamic binary (sequential or multithreaded)
— hpcrun [measurement options] myapp

» Use hpcrun with example job launcher commands
— jsrun -n 32 -g 1 -a 1 hpcrun [measurement options] myapp
- srun -n 1 -G 1 hpcrun [measurement options] myapp
— aprun -n 16 -N 8 -d 8 hpcrun [measurement options] myapp

» Specifying CPU events to measure
- hpcrun -e <event1>[@<howoften1>] -e <event2>[@<howoften2>] myapp

Note: To profile statically-linked applications, you must link your application with HPCToolkit’s
measurement subsystem using hpclink. See the HPCToolkit manual for details.

hpcrun - Tracing

» Specify tracing simply by adding “-t” as an argument to hpcrun
* Requirements
* must be measuring execution with a time-based metric
e Linux timer
 “cycles” measured with perf event

Sample Sources: Linux Timers
e« CPUTIME (DEFAULT if no sample source is specified)

- -e CPUTIME@-<period>: interrupt each thread every <period> microseconds it executes

— does not include time blocked in the kernel Best for analysis of

« disadvantage: misses time a thread is blocked profile data

» advantage: a blocked thread is never woken to take a sample
 REALTIME
- -e REALTIME@<period>: interrupt each thread every <period> microseconds

— includes time blocked in the kernel

« advantage: shows where a thread spends its time, even when blocked May produce more

« disadvantages intuitive traces

— activates a blocked thread to take a sample

— a blocked thread appears active even when blocked

E\(C\\;F’ Note: Only use one Linux timer to measure an execution

Sample Sources: Hardware Counters

e Each core in a modern processor has a performance monitoring unit with counters for HW events
e each thread has a small number of HW counters
» Linux kernel: perf_event subsystem for performance monitoring
e access and manipulate
— hardware counters: cycles, instructions, ...
— software counters: context switches, page faults, ...

e available in Linux kernels 2.6.31+

A useful explanation about events available through perf
= https://sites.google.com/site/Ibathen/research/perf

Sample Sources: perf_event Hardware Event Counters

« PERF_COUNT_HW_CPU_CYCLES

« PERF_COUNT_HW_INSTRUCTIONS

« PERF_COUNT_HW_CACHE_REFERENCES

« PERF_COUNT_HW_CACHE_MISSES

« PERF_COUNT_HW_BRANCH_INSTRUCTIONS

« PERF_COUNT_HW_BRANCH_MISSES

« PERF_COUNT_HW_BUS CYCLES

« PERF_COUNT_HW_STALLED CYCLES FRONTEND
« PERF_COUNT_HW_STALLED CYCLES BACKEND
« PERF_COUNT_HW_REF_CPU_CYCLES

Sample Sources: perf event Hardware Cache Events

« Hardware cache

- PERF_COUNT_HW_CACHE_L1D
PERF_COUNT_HW_CACHE_L1l
PERF_COUNT_HW_CACHE_LL
PERF_COUNT_HW_CACHE_DTLB
PERF_COUNT_HW_CACHE_ITLB
PERF_COUNT_HW_CACHE_BPU

» Operations
~ PERF_COUNT_HW_CACHE_OP_READ
— PERF_COUNT_HW_CACHE_OP_WRITE
- PERF_COUNT_HW_CACHE_OP_PREFETCH
* Results
- PERF_COUNT_HW_CACHE_RESULT_ACCESS
- PERF_COUNT_HW_CACHE_RESULT_MISS

o~
\\ EXASCARLE
) COMPUTING
\ PROJECT

Sample Sources: perf event Software Events

« PERF_COUNT_SW_CPU_CLOCK
« PERF_COUNT_SW_TASK_CLOCK
|- PERF_COUNT SW_PAGE_FAULTS |
« PERF_COUNT_SW_CONTEXT_SWITCHES
« PERF_COUNT_SW_CPU_MIGRATIONS
« PERF_COUNT_SW_PAGE_FAULTS_MIN
« PERF_COUNT_SW_PAGE_FAULTS MAJ
« PERF_COUNT_SW_ALIGNMENT_FAULTS
« PERF_COUNT_SW_EMULATION_FAULTS

useful when monitoring data-intensive codes

Sample Sources: Measuring Other HW Events with perf event
» See the full list of available events with
— hpcrun -L

» Perf events are grouped by categories indicated by a prefix

- ix86arch: :<event> /I Intel architecture
— perf::<event> I/ perf_event builtin
— bdw _ep::<event> // Broadwell EP specific

» For convenience
— you may omit the category prefix, e.g. “perf::”

— you may specify perf event counter names using lower case

Controlling perf_event Sampling Frequency

« Automatic Recommended
- HPCToolkit samples perf event counters min(300x/second, maximum Linux allows)
* may be higher than necessary for long executions

- reducing the frequency will reduce measurement overhead

» Specify frequency
- use the @f<freq> suffix for an event to specify frequency
* hpcrun -e cycles@f100 -e instructions@£f200 ...
- specify a different default frequency using the -c option
» example: sample both cycles and instructions 200x per second
—hpcrun -c £200 -e cycles -e instructions ...
» Specify period
- use the @<period> suffix for an event to specify a period

e hpcrun -e cycles@1000000 -e instructions@5000000 ...

Sample Sources: Multiplexing Events

» A single execution can measure more HW events than the number of counters available per thread
« If you specify more events than counters available

- perf event will automatically multiplex them
* How multiplexing works with Linux perf event subsystem

— at any time, the number of events being collected will not exceed the number of HW counters per
thread

— kernel will partition events into sets that can be monitored simultaneously using counter resources
— monitors one set of events for a while then switches to another

— kernel uses schedules event sets round-robin

— multiplexing is convenient but there is some loss of accuracy

» advice: multiplexing is fine for casual execution analysis

