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Sampling-based Performance Measurement

» Periodically interrupt each thread in an application

— interrupts are triggered by a “sample source” as a metric reaches some pre-determined
threshold

— example sample sources
o timer
— a thousandth of a second has passed
» hardware counters
— five million instructions have completed
— a million cache misses have occurred
« Why sampling?
— controllable overhead
— avoids blind spots and minimizes systematic error




Attribute Metrics to Call Paths

« When a thread’s timer or HW counter reaches some predetermined threshold T
* interrupt a thread
» unwind its call stack

Calling context tree
Call path sample

return address
return address

return address

instruction pointer

» charge T to the thread’s current calling context
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= \(C\\)F’ Overhead proportional to sampling frequency, not call frequency




HPCToolkit Quickstart

% hpcrun myapp
# profile CPUTIME of application and deposit results in hpctoolkit-myapp-measurements

% hpecstruct hpctoolkit-myapp-measurements
# analyze application binary and all dynamically loaded libraries involved in the execution

% hpcprof hpctoolkit-myapp-measurements
# analyze measurement data and correlate it to source using program structure from hpcstruct

% hpcviewer hpctoolkit-myapp-database




Video: Using HPCToolkit to Measure an OpenMP Program
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Understanding Temporal Behavior

* Profiling compresses out the temporal dimension

— Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
« What can we do? Trace call path samples

— N times per second, take a call path sample of each thread
Organize the samples for each thread along a time line

View how the execution evolves left to right
— What do we view? assign each procedure a color; view a depth slice of an execution

Processes

Time




Video: Using HPCToolkit to Analyze the Trace of an MPI Program
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See Slide Deck for Additional Details about Measurement

» Measuring applications when using a job launcher
» Specifying sample sources

— timers

— hardware counters
e Controlling measurement frequency

— automatic

— frequency-based sampling

— period-based sampling




Measuring Performance with hpcrun

 Profile a dynamic binary (sequential or multithreaded)
— hpcrun [measurement options] myapp ....

» Use hpcrun with example job launcher commands
— jsrun -n 32 -g 1 -a 1 hpcrun [measurement options] myapp
- srun -n 1 -G 1 hpcrun [measurement options] myapp
— aprun -n 16 -N 8 -d 8 hpcrun [measurement options] myapp

» Specifying CPU events to measure
- hpcrun -e <event1>[@<howoften1>] -e <event2>[@<howoften2>] myapp ....

Note: To profile statically-linked applications, you must link your application with HPCToolkit’s
measurement subsystem using hpclink. See the HPCToolkit manual for details.




hpcrun - Tracing

» Specify tracing simply by adding “-t” as an argument to hpcrun
* Requirements
* must be measuring execution with a time-based metric
e Linux timer
 “cycles” measured with perf event




Sample Sources: Linux Timers
e« CPUTIME (DEFAULT if no sample source is specified)

- -e CPUTIME@-<period>: interrupt each thread every <period> microseconds it executes

— does not include time blocked in the kernel Best for analysis of

« disadvantage: misses time a thread is blocked profile data

» advantage: a blocked thread is never woken to take a sample
 REALTIME
- -e REALTIME@<period>: interrupt each thread every <period> microseconds

— includes time blocked in the kernel

« advantage: shows where a thread spends its time, even when blocked May produce more

« disadvantages intuitive traces

— activates a blocked thread to take a sample

— a blocked thread appears active even when blocked

E\(C\\;F’ Note: Only use one Linux timer to measure an execution




Sample Sources: Hardware Counters

e Each core in a modern processor has a performance monitoring unit with counters for HW events
e each thread has a small number of HW counters
» Linux kernel: perf_event subsystem for performance monitoring
e access and manipulate
— hardware counters: cycles, instructions, ...
— software counters: context switches, page faults, ...

e available in Linux kernels 2.6.31+

A useful explanation about events available through perf
= https://sites.google.com/site/Ibathen/research/perf




Sample Sources: perf_event Hardware Event Counters

« PERF_COUNT_HW_CPU_CYCLES

« PERF_COUNT_HW_INSTRUCTIONS

« PERF_COUNT_HW_CACHE_REFERENCES

« PERF_COUNT_HW_CACHE_MISSES

« PERF_COUNT_HW_BRANCH_INSTRUCTIONS

« PERF_COUNT_HW_BRANCH_MISSES

« PERF_COUNT_HW_BUS CYCLES

« PERF_COUNT_HW_STALLED CYCLES FRONTEND
« PERF_COUNT_HW_STALLED CYCLES BACKEND
« PERF_COUNT_HW_REF_CPU_CYCLES




Sample Sources: perf event Hardware Cache Events

« Hardware cache

- PERF_COUNT_HW_CACHE_L1D
PERF_COUNT_HW_CACHE_L1l
PERF_COUNT_HW_CACHE_LL
PERF_COUNT_HW_CACHE_DTLB
PERF_COUNT_HW_CACHE_ITLB
PERF_COUNT_HW_CACHE_BPU

» Operations
~ PERF_COUNT_HW_CACHE_OP_READ
— PERF_COUNT_HW_CACHE_OP_WRITE
- PERF_COUNT_HW_CACHE_OP_PREFETCH
* Results
- PERF_COUNT_HW_CACHE_RESULT_ACCESS
- PERF_COUNT_HW_CACHE_RESULT_MISS
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Sample Sources: perf event Software Events

« PERF_COUNT_SW_CPU_CLOCK
« PERF_COUNT_SW_TASK_CLOCK
|- PERF_COUNT SW_PAGE_FAULTS |
« PERF_COUNT_SW_CONTEXT_SWITCHES
« PERF_COUNT_SW_CPU_MIGRATIONS
« PERF_COUNT_SW_PAGE_FAULTS_MIN
« PERF_COUNT_SW_PAGE_FAULTS MAJ
« PERF_COUNT_SW_ALIGNMENT_FAULTS
« PERF_COUNT_SW_EMULATION_FAULTS

useful when monitoring data-intensive codes




Sample Sources: Measuring Other HW Events with perf event
» See the full list of available events with
— hpcrun -L

» Perf events are grouped by categories indicated by a prefix

- ix86arch: :<event> /I Intel architecture
— perf::<event> I/ perf_event builtin
— bdw _ep::<event> // Broadwell EP specific

» For convenience
— you may omit the category prefix, e.g. “perf::”

— you may specify perf event counter names using lower case




Controlling perf_event Sampling Frequency

« Automatic Recommended
- HPCToolkit samples perf event counters min(300x/second, maximum Linux allows)
* may be higher than necessary for long executions

- reducing the frequency will reduce measurement overhead

» Specify frequency
- use the @f<freq> suffix for an event to specify frequency
* hpcrun -e cycles@f100 -e instructions@£f200 ...
- specify a different default frequency using the -c option
» example: sample both cycles and instructions 200x per second
—hpcrun -c £200 -e cycles -e instructions ...
» Specify period
- use the @<period> suffix for an event to specify a period

e hpcrun -e cycles@1000000 -e instructions@5000000 ...




Sample Sources: Multiplexing Events

» A single execution can measure more HW events than the number of counters available per thread
« If you specify more events than counters available

- perf event will automatically multiplex them
* How multiplexing works with Linux perf event subsystem

— at any time, the number of events being collected will not exceed the number of HW counters per
thread

— kernel will partition events into sets that can be monitored simultaneously using counter resources
— monitors one set of events for a while then switches to another

— kernel uses schedules event sets round-robin

— multiplexing is convenient but there is some loss of accuracy

» advice: multiplexing is fine for casual execution analysis




