
Sampling-based	Performance	Analysis	with	HPCToolkit	
Measurement	and	Analysis	of	Unmodified,	Optimized	Applications

John	Mellor-Crummey	
Department	of	Computer	Science	
Rice	University	

15	November	2021

Outline
• Sampling-based call path profiling
• Using HPCToolkit on a single node
• Demo data collection and profile analysis
• Demo trace analysis
• Pointers to additional information about measurement

2

Sampling-based Performance Measurement
• Periodically interrupt each thread in an application

– interrupts are triggered by a “sample source” as a metric reaches some pre-determined
threshold

– example sample sources
• timer
– a thousandth of a second has passed

• hardware counters
– five million instructions have completed
– a million cache misses have occurred

• Why sampling?
– controllable overhead
– avoids blind spots and minimizes systematic error

3

Attribute Metrics to Call Paths

Overhead proportional to sampling frequency, not call frequency

Calling context tree

4

• When a thread’s timer or HW counter reaches some predetermined threshold T
• interrupt a thread
• unwind its call stack

• charge T to the thread’s current calling context

Call path sample

instruction pointer

return address

return address

return address

HPCToolkit Quickstart
% hpcrun myapp

profile CPUTIME of application and deposit results in hpctoolkit-myapp-measurements
% hpcstruct hpctoolkit-myapp-measurements

analyze application binary and all dynamically loaded libraries involved in the execution
% hpcprof hpctoolkit-myapp-measurements

analyze measurement data and correlate it to source using program structure from hpcstruct
% hpcviewer hpctoolkit-myapp-database

5

Video: Using HPCToolkit to Measure an OpenMP Program

6

Understanding Temporal Behavior
• Profiling compresses out the temporal dimension

– Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles
• What can we do? Trace call path samples

– N times per second, take a call path sample of each thread
– Organize the samples for each thread along a time line
– View how the execution evolves left to right
– What do we view? assign each procedure a color; view a depth slice of an execution

Time

Processes

Call
stack

7

Video: Using HPCToolkit to Analyze the Trace of an MPI Program

8

9

See Slide Deck for Additional Details about Measurement

• Measuring applications when using a job launcher

• Specifying sample sources

– timers

– hardware counters

• Controlling measurement frequency

– automatic

– frequency-based sampling

– period-based sampling

3/28/2021

10

Measuring Performance with hpcrun

• Profile a dynamic binary (sequential or multithreaded)
– hpcrun [measurement options] myapp ….

• Use hpcrun with example job launcher commands
– jsrun -n 32 -g 1 -a 1 hpcrun [measurement options] myapp
– srun -n 1 -G 1 hpcrun [measurement options] myapp
– aprun -n 16 -N 8 -d 8 hpcrun [measurement options] myapp

• Specifying CPU events to measure
– hpcrun -e <event1>[@<howoften1>] -e <event2>[@<howoften2>] myapp ….

3/28/2021

Note: To profile statically-linked applications, you must link your application with HPCToolkit’s
measurement subsystem using hpclink. See the HPCToolkit manual for details.

11

hpcrun - Tracing

• Specify tracing simply by adding “-t” as an argument to hpcrun
• Requirements
• must be measuring execution with a time-based metric
• Linux timer
• “cycles” measured with perf_event

12

Sample Sources: Linux Timers
• CPUTIME (DEFAULT if no sample source is specified)

– -e CPUTIME@<period>: interrupt each thread every <period> microseconds it executes

– does not include time blocked in the kernel

• disadvantage: misses time a thread is blocked

• advantage: a blocked thread is never woken to take a sample

• REALTIME

– -e REALTIME@<period>: interrupt each thread every <period> microseconds

– includes time blocked in the kernel

• advantage: shows where a thread spends its time, even when blocked

• disadvantages

– activates a blocked thread to take a sample

– a blocked thread appears active even when blocked

Note: Only use one Linux timer to measure an execution

Best for analysis of
profile data

May produce more
intuitive traces

13

Sample Sources: Hardware Counters

• Each core in a modern processor has a performance monitoring unit with counters for HW events

• each thread has a small number of HW counters

• Linux kernel: perf_event subsystem for performance monitoring

• access and manipulate

– hardware counters: cycles, instructions, …

– software counters: context switches, page faults, …

• available in Linux kernels 2.6.31+

A useful explanation about events available through perf
https://sites.google.com/site/lbathen/research/perf

14

Sample Sources: perf_event Hardware Event Counters

• PERF_COUNT_HW_CPU_CYCLES

• PERF_COUNT_HW_INSTRUCTIONS

• PERF_COUNT_HW_CACHE_REFERENCES

• PERF_COUNT_HW_CACHE_MISSES

• PERF_COUNT_HW_BRANCH_INSTRUCTIONS

• PERF_COUNT_HW_BRANCH_MISSES

• PERF_COUNT_HW_BUS_CYCLES

• PERF_COUNT_HW_STALLED_CYCLES_FRONTEND

• PERF_COUNT_HW_STALLED_CYCLES_BACKEND

• PERF_COUNT_HW_REF_CPU_CYCLES

15

Sample Sources: perf_event Hardware Cache Events
• Hardware cache

– PERF_COUNT_HW_CACHE_L1D

– PERF_COUNT_HW_CACHE_L1I

– PERF_COUNT_HW_CACHE_LL

– PERF_COUNT_HW_CACHE_DTLB

– PERF_COUNT_HW_CACHE_ITLB

– PERF_COUNT_HW_CACHE_BPU

• Operations

– PERF_COUNT_HW_CACHE_OP_READ

– PERF_COUNT_HW_CACHE_OP_WRITE

– PERF_COUNT_HW_CACHE_OP_PREFETCH

• Results

– PERF_COUNT_HW_CACHE_RESULT_ACCESS

– PERF_COUNT_HW_CACHE_RESULT_MISS

16

Sample Sources: perf_event Software Events
• PERF_COUNT_SW_CPU_CLOCK

• PERF_COUNT_SW_TASK_CLOCK

• PERF_COUNT_SW_PAGE_FAULTS

• PERF_COUNT_SW_CONTEXT_SWITCHES

• PERF_COUNT_SW_CPU_MIGRATIONS

• PERF_COUNT_SW_PAGE_FAULTS_MIN

• PERF_COUNT_SW_PAGE_FAULTS_MAJ

• PERF_COUNT_SW_ALIGNMENT_FAULTS

• PERF_COUNT_SW_EMULATION_FAULTS

useful when monitoring data-intensive codes

17

Sample Sources: Measuring Other HW Events with perf_event
• See the full list of available events with

– hpcrun -L

• Perf events are grouped by categories indicated by a prefix

– ix86arch::<event> // Intel architecture

– perf::<event> // perf_event builtin

– bdw_ep::<event> // Broadwell EP specific

– …

• For convenience

– you may omit the category prefix, e.g. “perf::”

– you may specify perf_event counter names using lower case

18

Controlling perf_event Sampling Frequency
• Automatic

– HPCToolkit samples perf_event counters min(300x/second, maximum Linux allows)

• may be higher than necessary for long executions

– reducing the frequency will reduce measurement overhead

• Specify frequency

– use the @f<freq> suffix for an event to specify frequency

• hpcrun -e cycles@f100 -e instructions@f200 …

– specify a different default frequency using the -c option

• example: sample both cycles and instructions 200x per second

– hpcrun -c f200 -e cycles -e instructions …

• Specify period

– use the @<period> suffix for an event to specify a period

• hpcrun -e cycles@1000000 -e instructions@5000000 …

Recommended

Sample Sources: Multiplexing Events

• A single execution can measure more HW events than the number of counters available per thread

• If you specify more events than counters available

– perf_event will automatically multiplex them

• How multiplexing works with Linux perf_event subsystem

– at any time, the number of events being collected will not exceed the number of HW counters per
thread

– kernel will partition events into sets that can be monitored simultaneously using counter resources

– monitors one set of events for a while then switches to another

– kernel uses schedules event sets round-robin

– multiplexing is convenient but there is some loss of accuracy

• advice: multiplexing is fine for casual execution analysis

19

