
Identifying	Scalability	Bottlenecks	with	HPCToolkit

John	Mellor-Crummey	
Department	of	Computer	Science	
Rice	University	

15	November	2021

2

The Problem of Scaling
Ef

fic
ie

nc
y

0.500

0.625

0.750

0.875

1.000

CPUs

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ideal efficiency
Actual efficiency

?

Note: higher is better

3

Goal: Automatic Scaling Analysis

• Pinpoint scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem

• Diagnose the nature of the problem

4

Challenges for Pinpointing Scalability Bottlenecks

• Parallel applications
– modern software uses layers of libraries
– performance is often context dependent

• Monitoring
– bottleneck nature: computation, data movement, synchronization?
– 2 pragmatic constraints (1) acceptable data volume, (2) low perturbation

Example climate code skeleton

ocean

wait wait

sea ice

waitwait

atmosphereland

main

5

Scalability Analysis with Expectations

• You have performance expectations for your parallel code
– strong scaling: linear speedup
– weak scaling: constant execution time

• Put your expectations to work
– measure performance under different conditions

• e.g., different levels of parallelism and/or different inputs
– express your expectations as an equation
– compute the deviation from expectations for each calling context

• for both inclusive and exclusive costs
– correlate the metrics with the source code
– explore the annotated call tree interactively

200K

400K600K

6

Pinpointing and Quantifying Scalability Bottlenecks

=−

Q P

1/Q ×

coefficients for analysis
of weak scaling

1/P ×

7

Scalability Analysis Demo

Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instabilityOrzag/Tang MHD
vortexMagnetic

Rayleigh-Taylor
Figures courtesy of FLASH Team, University of Chicago

Code: University of Chicago FLASH
Simulation: White dwarf detonation
Platform: Blue Gene/P
Experiment: 8192 vs. 256 processors
Scaling type: weak

• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be combined to create

many different applications

Cellular detonation

8

Scalability Analysis of Flash (Demo)

9

Scalability Analysis of FLASH

• Difference call path profile from two
executions
– different number of nodes
– different number of threads

• Pinpoint and quantify scalability
bottlenecks within or across nodes

significant scaling
losses caused by
passing data around
a ring of processors

10

Improved Flash Scaling of AMR Setup

Graph courtesy of Anshu Dubey, U Chicago

Scalability Loss in Practice
• Try computing scaling losses across nodes as you increase the node count
• Try computing scaling losses within nodes as you increase the thread count

• How?
• use hpcrun to monitor an execution at scale P

• e.g. mpirun -n 100 hpcrun -o foo.m …
• use hpcrun to monitor an execution at scale Q

• e.g. mpirun -n 1000 hpcrun -o bar.m …
• use hpcstruct to analyze binaries in each directory
• invoke hpcprof passing both of the directories

• e.g., hpcprof foo.m bar.m
• open the resulting database in hpcviewer and use the equation to analyze your losses!

11

References
• Cristian Coarfa, John Mellor-Crummey, Nathan Froyd, and Yuri Dotsenko. 2007. Scalability

analysis of SPMD codes using expectations. In Proceedings of the 21st annual
International Conference on Supercomputing (ICS '07). Association for Computing
Machinery, New York, NY, USA, 13–22. DOI:https://doi.org/10.1145/1274971.1274976

• Rice University, HPCToolkit Users Manual. http://hpctoolkit.org/manual/HPCToolkit-users-
manual.pdf

12

