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The Problem of Scaling
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Goal: Automatic Scaling Analysis

• Pinpoint scalability bottlenecks 

• Guide user to problems 

• Quantify the magnitude of each problem 

• Diagnose the nature of the problem
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Challenges for Pinpointing Scalability Bottlenecks

• Parallel applications 
– modern software uses layers of libraries 
– performance is often context dependent 

• Monitoring 
– bottleneck nature: computation, data movement, synchronization? 
– 2 pragmatic constraints (1) acceptable data volume, (2) low perturbation

Example climate code skeleton
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Scalability Analysis with Expectations

• You have performance expectations for your parallel code 
– strong scaling: linear speedup 
– weak scaling: constant execution time 

• Put your expectations to work 
– measure performance under different conditions 

• e.g., different levels of parallelism and/or different inputs 
– express your expectations as an equation 
– compute the deviation from expectations for each calling context 

• for both inclusive and exclusive costs 
– correlate the metrics with the source code  
– explore the annotated call tree interactively
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Pinpointing and Quantifying Scalability Bottlenecks
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Scalability Analysis Demo

Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instabilityOrzag/Tang MHD 
vortexMagnetic 

Rayleigh-Taylor
Figures courtesy of FLASH Team, University of Chicago

Code:   University of Chicago FLASH 
Simulation:  White dwarf detonation 
Platform:           Blue Gene/P  
Experiment:  8192 vs. 256 processors 
Scaling type:  weak

• Parallel, adaptive-mesh refinement (AMR) code 
• Block structured AMR; a block is the unit of computation 
• Designed for compressible reactive flows 
• Can solve a broad range of (astro)physical problems 
• Portable: runs on many massively-parallel systems 
• Scales and performs well 
• Fully modular and extensible: components can be combined to create 

many different applications

Cellular detonation
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Scalability Analysis of Flash (Demo)
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Scalability Analysis of FLASH

• Difference call path profile from two 
executions 
– different number of nodes 
– different number of threads 

• Pinpoint and quantify scalability 
bottlenecks within or across nodes

significant scaling 
losses caused by 
passing data around 
a ring of processors 
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Improved Flash Scaling of AMR Setup

Graph courtesy of Anshu Dubey, U Chicago



Scalability Loss in Practice
• Try computing scaling losses across nodes as you increase the node count 
• Try computing scaling losses within nodes as you increase the thread count 

• How? 
• use hpcrun to monitor an execution at scale P 

• e.g. mpirun -n 100 hpcrun -o foo.m …  
• use hpcrun to monitor an execution at scale Q 

• e.g. mpirun -n 1000 hpcrun -o bar.m …  
• use hpcstruct to analyze binaries in each directory 
• invoke hpcprof passing both of the directories 

• e.g., hpcprof foo.m bar.m 
• open the resulting database in hpcviewer and use the equation to analyze your losses!  
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