
HPCToolkit User’s Manual

Version 2024.01

John Mellor-Crummey,
Laksono Adhianto, Jonathon Anderson, Mike Fagan, Dragana Grbic, Marty Itzkowitz,

Mark Krentel, Xiaozhu Meng, Nathan Tallent, Keren Zhou

Rice University

March 2024

Contents

1 Introduction 1

2 HPCToolkit Overview 7

2.1 Asynchronous Sampling and Call Path Profiling 8

2.2 Recovering Static Program Structure . 9

2.3 Reducing Performance Measurements . 10

2.4 Presenting Performance Measurements . 10

3 Quick Start 11

3.1 Guided Tour . 11

3.1.1 Compiling an Application . 11

3.1.2 Measuring Application Performance 12

3.1.3 Recovering Program Structure . 14

3.1.4 Analyzing Measurements & Attributing Them to Source Code . . . 14

3.1.5 Presenting Performance Measurements for Interactive Analysis . . . 15

3.1.6 Effective Performance Analysis Techniques 15

3.2 Additional Guidance . 16

4 Effective Strategies for Analyzing Program Performance 17

4.1 Monitoring High-Latency Penalty Events 17

4.2 Computing Derived Metrics . 17

4.3 Pinpointing and Quantifying Inefficiencies 20

4.4 Pinpointing and Quantifying Scalability Bottlenecks 23

4.4.1 Scalability Analysis Using Expectations 24

5 Monitoring Dynamically-linked Applications with hpcrun 29

5.1 Using hpcrun . 29

5.1.1 If hpcrun causes your application to fail 31

5.2 Hardware Counter Event Names . 32

5.3 Sample Sources . 33

5.3.1 Linux perf events . 33

5.3.2 PAPI . 36

5.3.3 REALTIME and CPUTIME . 38

5.3.4 IO . 39

5.3.5 MEMLEAK . 39

ii

5.4 Experimental Python Support . 41

5.4.1 Known Limitations . 42

5.5 Process Fraction . 42

5.6 Starting and Stopping Sampling . 43

5.7 Environment Variables for hpcrun . 44

5.8 Cray System Specific Notes . 45

6 Monitoring Statically Linked Applications with hpclink 47

6.1 Linking with hpclink . 47

6.1.1 Using hpclink when gprof instrumentation is present 48

6.2 Running a Statically Linked Binary . 48

6.3 Troubleshooting . 48

7 Monitoring MPI Applications 51

7.1 Running and Analyzing MPI Programs . 51

7.2 Building and Installing HPCToolkit . 53

8 Measurement and Analysis of GPU-accelerated Applications 55

8.1 GPU Performance Measurement Substrate 55

8.1.1 Profiling GPU Activities . 55

8.1.2 Tracing GPU Activities . 57

8.2 NVIDIA GPUs . 58

8.2.1 Performance Measurement of CUDA Programs 58

8.2.2 PC Sampling on NVIDIA GPUs . 60

8.2.3 Attributing Measurements to Source Code for NVIDIA GPUs 62

8.2.4 GPU Calling Context Tree Reconstruction 63

8.3 AMD GPUs . 67

8.4 Intel GPUs . 67

8.5 Performance Measurement of OpenCL Programs 68

9 Measurement and Analysis of OpenMP Multithreading 71

9.1 Monitoring OpenMP on the Host . 71

9.2 Monitoring OpenMP Offloading on GPUs 72

9.2.1 NVIDIA GPUs . 72

9.2.2 AMD GPUs . 73

9.2.3 Intel GPUs . 73

10 Analyzing Performance Data with hpcviewer 75

10.1 Launching . 76

10.2 Profile View . 77

10.3 Panes . 79

10.3.1 Source Pane . 79

10.3.2 Navigation Pane . 79

10.3.3 Metric Pane . 81

10.4 Understanding Metrics . 81

10.4.1 How Metrics are Computed . 82

10.4.2 Example . 82
10.5 Derived Metrics . 84

10.5.1 Formulae . 84
10.5.2 Examples . 84
10.5.3 Creating Derived Metrics . 85

10.6 Metrics in Execution-context level . 86
10.6.1 Plot Graphs . 87
10.6.2 Thread View . 88

10.7 Filtering Tree Nodes . 89
10.8 Convenience Features . 91

10.8.1 Editor Pane . 91
10.8.2 Metric Pane . 91

10.9 Trace view . 92
10.9.1 Main View . 96
10.9.2 Depth View . 96
10.9.3 Summary View . 97
10.9.4 Call Stack View . 97
10.9.5 Mini Map View . 97

10.10Menus . 97
10.10.1File . 98
10.10.2Filter . 98
10.10.3View . 98
10.10.4Help . 99

10.11Limitations . 100

11 Known Issues 101
11.1 Inaccurate attribution of performance information can occur on Sapphire

Rapids processors with HPCToolkit . 101
11.2 We observed bad generated code for Dyninst using gcc 11.2.0 on Aurora . . 101
11.3 When monitoring applications that use ROCm 6.0.0, using LD AUDIT in

hpcrun may cause it to fail to elide OpenMP runtime frames 102
11.4 When using Intel GPUs, hpcrun may report that substantial time is spent

in a partial call path consisting of only an unknown procedure 102
11.5 hpcrun reports partial call paths for code executed by a constructor prior to

entering main . 102
11.6 hpcrun may fail to measure a program execution on a CPU with hardware

performance counters . 103
11.7 hpcrun may associate several profiles and traces with rank 0, thread 0 . . . 103
11.8 hpcrun sometimes enables writing of read-only data 104
11.9 A confusing label for GPU theoretical occupancy 104
11.10Deadlock when using Darshan . 105

12 FAQ and Troubleshooting 107
12.1 Instrumenting Statically-linked Applications 107
12.2 General Measurement Failures . 108

12.2.1 Unable to find HPCTOOLKIT root directory 108

12.2.2 Profiling setuid programs . 108

12.2.3 Problems loading dynamic libraries 108

12.2.4 Problems caused by gprof instrumentation 108

12.3 Measurement Failures using NVIDIA GPUs 109

12.3.1 Deadlock while monitoring a program that uses IBM Spectrum MPI
and NVIDIA GPUs . 109

12.3.2 Ensuring permission to use GPU performance counters 109

12.3.3 Avoiding the error cudaErrorUnknown 110

12.3.4 Avoiding the error CUPTI ERROR NOT INITIALIZED 110

12.3.5 Avoiding the error CUPTI ERROR HARDWARE BUSY 111

12.3.6 Avoiding the error CUPTI ERROR UNKNOWN 111

12.4 General Measurement Issues . 111

12.4.1 How do I choose sampling periods? 111

12.4.2 Why do I see partial unwinds? . 112

12.4.3 Measurement with HPCToolkit has high overhead! Why? 112

12.4.4 Some of my syscalls return EINTR 113

12.4.5 My application spends a lot of time in C library functions with names
that include mcount . 113

12.5 Problems Recovering Loops in NVIDIA GPU binaries 114

12.6 Graphical User Interface Issues . 114

12.6.1 Fail to run hpcviewer: executable launcher was unable to locate its
companion shared library . 114

12.6.2 Launching hpcviewer is very slow on Windows 114

12.6.3 Mac only: hpcviewer runs on Java X instead of “Java 11” 115

12.6.4 When executing hpcviewer, it complains cannot create “Java Virtual
Machine” . 115

12.6.5 hpcviewer fails to launch due to java.lang.NoSuchMethodError ex-
ception. 115

12.6.6 hpcviewer fails due to java.lang.OutOfMemoryError exception. . . 116

12.6.7 hpcviewer writes a long list of Java error messages to the terminal! 116

12.6.8 hpcviewer attributes performance information only to functions and
not to source code loops and lines! Why? 116

12.6.9 hpcviewer hangs trying to open a large database! Why? 117

12.6.10hpcviewer runs glacially slowly! Why? 117

12.6.11hpcviewer does not show my source code! Why? 117

12.6.12hpcviewer’s reported line numbers do not exactly correspond to what
I see in my source code! Why? . 119

12.6.13hpcviewer claims that there are several calls to a function within a
particular source code scope, but my source code only has one! Why? 119

12.6.14Trace view shows lots of white space on the left. Why? 120

12.7 Debugging . 120

12.7.1 How do I debug HPCToolkit’s measurement? 120

12.7.2 Tracing libmonitor . 120

12.7.3 Tracing HPCToolkit’s Measurement Subsystem 120

12.7.4 Using a debugger to inspect an execution being monitored by HPC-
Toolkit . 121

A Environment Variables 125
A.1 Environment Variables for Users . 125
A.2 Environment Variables that May Avoid a Crash 128
A.3 Environment Variables for Developers . 129

1

Chapter 1

Introduction

HPCToolkit [1, 14] is an integrated suite of tools for measurement and analysis of
program performance on computers ranging from multicore desktop systems to the world’s
largest supercomputers. HPCToolkit provides accurate measurements of a program’s
work, resource consumption, and inefficiency, correlates these metrics with the program’s
source code, works with multilingual, fully optimized binaries, has low measurement over-
head, and scales to large parallel systems. HPCToolkit’s measurements provide support
for analyzing a program execution cost, inefficiency, and scaling characteristics both within
and across nodes of a parallel system.

HPCToolkit principally monitors an execution of a multithreaded and/or multipro-
cess program using asynchronous sampling, unwinding thread call stacks, and attributing
the metric value associated with a sample event in a thread to the calling context of the
thread/process in which the event occurred. HPCToolkit’s asynchronous sampling is typ-
ically triggered by the expiration of a Linux timer or a hardware performance monitoring
unit event, such reaching a threshold value for a hardware performance counter. Sampling
has several advantages over instrumentation for measuring program performance: it requires
no modification of source code, it avoids potential blind spots (such as code available in
only binary form), and it has lower overhead. HPCToolkit typically adds measurement
overhead of only a few percent to an execution for reasonable sampling rates [18]. Sam-
pling enables fine-grain measurement and attribution of costs in both serial and parallel
programs.

For parallel programs, one can use HPCToolkit to measure the fraction of time threads
are idle, working, or communicating. To obtain detailed information about a program’s
computation performance, one can collect samples using a processor’s built-in performance
monitoring units to measure metrics such as operation counts, pipeline stalls, cache misses,
and data movement between processor sockets. Such detailed measurements are essential
to understand the performance characteristics of applications on modern multicore micro-
processors that employ instruction-level parallelism, out-of-order execution, and complex
memory hierarchies. With HPCToolkit, one can also easily compute derived metrics
such as cycles per instruction, waste, and relative efficiency to provide insight into a pro-
gram’s shortcomings.

A unique capability of HPCToolkit is its ability to unwind the call stack of a thread
executing highly optimized code to attribute time, hardware counter metrics, as well as

1

Figure 1.1: A code-centric view of an execution of the University of Chicago’s FLASH
code executing on 8192 cores of a Blue Gene/P. This bottom-up view shows that 16% of the
execution time was spent in IBM’s DCMF messaging layer. By tracking these costs up the
call chain, we can see that most of this time was spent on behalf of calls to pmpi allreduce

on line 419 of amr comm setup.

software metrics (e.g., context switches) to a full calling context. Call stack unwinding is
often difficult for highly optimized code [18]. For accurate call stack unwinding, HPCToolkit
employs two strategies: interpreting compiler-recorded information in DWARF Frame De-
scriptor Entries (FDEs) and binary analysis to compute unwind recipes directly from an
application’s machine instructions. On ARM processors, HPCToolkit uses libunwind ex-
clusively. On Power processors, HPCToolkit uses binary analysis exclusively. On x86 64
processors, HPCToolkit employs both strategies in an integrated fashion.

HPCToolkit assembles performance measurements into a call path profile that asso-
ciates the costs of each function call with its full calling context. In addition, HPCToolkit
uses binary analysis to attribute program performance metrics with detailed precision – full
dynamic calling contexts augmented with information about call sites, inlined functions and
templates, loops, and source lines. Measurements can be analyzed in a variety of ways: top-
down in a calling context tree, which associates costs with the full calling context in which
they are incurred; bottom-up in a view that apportions costs associated with a function to
each of the contexts in which the function is called; and in a flat view that aggregates all
costs associated with a function independent of calling context. This multiplicity of code-
centric perspectives is essential to understanding a program’s performance for tuning under
various circumstances. HPCToolkit also supports a thread-centric perspective, which
enables one to see how a performance metric for a calling context differs across threads, and
a time-centric perspective, which enables a user to see how an execution unfolds over time.

2

Figure 1.2: A thread-centric view of the performance of a parallel radix sort application
executing on 960 cores of a Cray XE6. The bottom pane shows a calling context for usort
in the execution. The top pane shows a graph of how much time each thread spent executing
calls to usort from the highlighted context. On a Cray XE6, there is one MPI helper thread
for each compute node in the system; these helper threads spent no time executing usort.
The graph shows that some of the MPI ranks spent twice as much time in usort as others.
This happens because the radix sort divides up the work into 1024 buckets. In an execution
on 960 cores, 896 cores work on one bucket and 64 cores work on two. The middle pane
shows an alternate view of the thread-centric data as a histogram.

Figures 1.1–1.3 show samples of HPCToolkit’s code-centric, thread-centric, and time-centric
views.

By working at the machine-code level, HPCToolkit accurately measures and at-
tributes costs in executions of multilingual programs, even if they are linked with libraries
available only in binary form. HPCToolkit supports performance analysis of fully opti-
mized code. It measures and attributes performance metrics to shared libraries that are
dynamically loaded at run time. The low overhead of HPCToolkit’s sampling-based mea-
surement is particularly important for parallel programs because measurement overhead can
distort program behavior.

HPCToolkit is also especially good at pinpointing scaling losses in parallel codes, both
within multicore nodes and across the nodes in a parallel system. Using differential analysis
of call path profiles collected on different numbers of threads or processes enables one to

3

quantify scalability losses and pinpoint their causes to individual lines of code executed
in particular calling contexts [5]. We have used this technique to quantify scaling losses in
leading science applications across thousands of processor cores on Cray and IBM Blue Gene
systems, associate them with individual lines of source code in full calling context [16, 19],
and quantify scaling losses in science applications within compute nodes at the loop nest
level due to competition for memory bandwidth in multicore processors [15]. We have also
developed techniques for efficiently attributing the idleness in one thread to its cause in
another thread [17,21].

HPCToolkit is deployed on many DOE supercomputers, including the Sierra super-
computer (IBM Power9 + NVIDIA V100 GPUs) at Lawrence Livermore National Labo-
ratory, Cray XC40 systems at Argonne’s Leadership Computing Facility and the National
Energy Research Scientific Computing Center; the Summit supercomputer (IBM Power9 +
NVIDIA V100 GPUs) at Oak Ridge Leadership Computing Facility as well as other clusters
and supercomputers based on x86 64, Power, and ARM processors.

4

Figure 1.3: A time-centric view of part of an execution of the University of Chicago’s
FLASH code on 256 cores of a Blue Gene/P. The figure shows a detail from the end of the
initialization phase and part of the first iteration of the solve phase. The largest pane in
the figure shows the activity of cores 2–95 in the execution during a time interval ranging
from 69.376s–85.58s during the execution. Time lines for threads are arranged from top
to bottom and time flows from left to right. The color at any point in time for a thread
indicates the procedure that the thread is executing at that time. The right pane shows
the full call stack of thread 85 at 84.82s into the execution, corresponding to the selection
shown by the white crosshair; the outermost procedure frame of the call stack is shown at
the top of the pane and the innermost frame is shown at the bottom. This view highlights
that even though FLASH is an SPMD program, the behavior of threads over time can be
quite different. The purple region highlighted by the cursor, which represents a call by
all processors to mpi allreduce, shows that the time spent in this call varies across the
processors. The variation in time spent waiting in mpi allreduce is readily explained by an
imbalance in the time processes spend a prior prolongation step, shown in yellow. Further
left in the figure, one can see differences among ranks executing on different cores in each
node as they await the completion of an mpi allreduce. A rank executing on one core
of each node waits in DCMF Messager advance (which appears as blue stripes) while ranks
executing on other cores in each node wait in a helper function (shown in green). In this
phase, ranks await the delayed arrival of a few of their peers who have extra work to do
inside simulation initblock before they call mpi allreduce.

5

6

Chapter 2

HPCToolkit Overview

HPCToolkit’s work flow is organized around four principal capabilities, as shown in
Figure 2.1:

1. measurement of context-sensitive performance metrics using call-stack unwinding while
an application executes;

2. binary analysis to recover program structure from the application binary and the
shared libraries and GPU binaries used in the run;

3. attribution of performance metrics by correlating dynamic performance metrics with
static program structure; and

4. presentation of performance metrics and associated source code.

To use HPCToolkit to measure and analyze an application’s performance, one first
compiles and links the application for a production run, using full optimization and in-
cluding debugging symbols.1 Second, one launches an application with HPCToolkit’s
measurement tool, hpcrun, which uses statistical sampling to collect a performance profile.
Third, one invokes hpcstruct, HPCToolkit’s tool for analyzing an application binary
and any shared objects and GPU binaries it used in the data collection run, as stored in
the measurements directory. It recovers information about source files, procedures, loops,
and inlined code. Fourth, one uses hpcprof to combine information about an application’s
structure with dynamic performance measurements to produce a performance database. Fi-
nally, one explores a performance database with HPCToolkit’s hpcviewer and/or Trace
view graphical presentation tools.

The rest of this chapter briefly discusses unique aspects of HPCToolkit’s measure-
ment, analysis and presentation capabilities.

1For the most detailed attribution of application performance data using HPCToolkit, one should
ensure that the compiler includes line map information in the object code it generates. While HPCToolkit
does not need this information to function, it can be helpful to users trying to interpret the results. Since
compilers can usually provide line map information for fully optimized code, this requirement need not
require a special build process. For instance, with the Intel compiler we recommend using -g -debug

inline debug info.

7

Figure 2.1: Overview of HPCToolkit’s tool work flow.

2.1 Asynchronous Sampling and Call Path Profiling

Without accurate measurement, performance analysis results may be of questionable
value. As a result, a principal focus of work on HPCToolkit has been the design and
implementation of techniques to provide accurate fine-grain measurements of production
applications running at scale. For tools to be useful on production applications on large-
scale parallel systems, large measurement overhead is unacceptable. For measurements to
be accurate, performance tools must avoid introducing measurement error. Both source-
level and binary instrumentation can distort application performance through a variety of
mechanisms [12]. Frequent calls to small instrumented procedures can lead to considerable
measurement overhead. Furthermore, source-level instrumentation can distort application
performance by interfering with inlining and template optimization. To avoid these effects,
many instrumentation-based tools intentionally refrain from instrumenting certain proce-
dures. Ironically, the more this approach reduces overhead, the more it introduces blind
spots, i.e., intervals of unmonitored execution. For example, a common selective instru-
mentation technique is to ignore small frequently executed procedures — but these may be
just the thread synchronization library routines that are critical. Sometimes, a tool unin-
tentionally introduces a blind spot. A typical example is that source code instrumentation
suffers from blind spots when source code is unavailable, a common condition for math and
communication libraries.

To avoid these problems, HPCToolkit eschews instrumentation and favors the use of
asynchronous sampling to measure and attribute performance metrics. During a program
execution, sample events are triggered by periodic interrupts induced by an interval timer
or overflow of hardware performance counters. One can sample metrics that reflect work
(e.g., instructions, floating-point operations), consumption of resources (e.g., cycles, band-
width consumed in the memory hierarchy by data transfers in response to cache misses),
or inefficiency (e.g., stall cycles). For reasonable sampling frequencies, the overhead and
distortion introduced by sampling-based measurement is typically much lower than that
introduced by instrumentation [7].

8

For all but the most trivially structured programs, it is important to associate the costs
incurred by each procedure with the contexts in which the procedure is called. Know-
ing the context in which each cost is incurred is essential for understanding why the code
performs as it does. This is particularly important for code based on application frame-
works and libraries. For instance, costs incurred for calls to communication primitives (e.g.,
MPI_Wait) or code that results from instantiating C++ templates for data structures can
vary widely depending how they are used in a particular context. Because there are often
layered implementations within applications and libraries, it is insufficient either to insert
instrumentation at any one level or to distinguish costs based only upon the immediate
caller. For this reason, HPCToolkit uses call path profiling to attribute costs to the full
calling contexts in which they are incurred.

HPCToolkit’s hpcrun call path profiler uses call stack unwinding to attribute execu-
tion costs of optimized executables to the full calling context in which they occur. Unlike
other tools, to support asynchronous call stack unwinding during execution of optimized
code, hpcrun uses on-line binary analysis to locate procedure bounds and compute an un-
wind recipe for each code range within each procedure [18]. These analyses enable hpcrun

to unwind call stacks for optimized code with little or no information other than an appli-
cation’s machine code.

The output of a run with hpcrun is a measurements directory containing the data, and
the information necessary to recover the names of all shared libraries and GPU binaries.

2.2 Recovering Static Program Structure

To enable effective analysis, call path profiles for executions of optimized programs must
be correlated with important source code abstractions. Since measurements refer only to
instruction addresses within the running application, it is necessary to map measurements
back to the program source. The mappings include those of the application and any shared
libraries referenced during the run, as well as those for any GPU binaries executed on
GPUs during the run. To associate measurement data with the static structure of fully-
optimized executables, we need a mapping between object code and its associated source
code structure.2 HPCToolkit constructs this mapping using binary analysis; we call this
process recovering program structure [18].

HPCToolkit focuses its efforts on recovering source files, procedures, inlined functions
and templates, as well as loop nests as the most important elements of source code structure.
To recover program structure, HPCToolkit’s hpcstruct utility parses a binary’s machine
instructions, reconstructs a control flow graph, combines line map and DWARF information
about inlining with interval analysis on the control flow graph in a way that enables it to
relate machine code after optimization back to the original source.

One important benefit accrues from this approach. HPCToolkit can expose the struc-
ture of and assign metrics to the code is actually executed, even if source code is unavailable.
For example, hpcstruct’s program structure naturally reveals transformations such as loop
fusion and scalarization loops that arise from compilation of Fortran 90 array notation. Sim-

2This object to source code mapping should be contrasted with the binary’s line map, which (if present)
is typically fundamentally line based.

9

ilarly, it exposes calls to compiler support routines and wait loops in communication libraries
of which one would otherwise be unaware.

2.3 Reducing Performance Measurements

HPCToolkit combines (post-mortem) the recovered static program structure with
dynamic call paths to expose inlined frames and loop nests. This enables us to attribute
the performance of samples in their full static and dynamic context and correlate it with
source code.

The data reduction is done by HPCToolkit’s hpcprof utility, invoked on the measure-
ments directory recorded by hpcrun and augmented with program structure information by
hpcstruct. From the measurements and structure, hpcprof generates a database directory
containing performance data presentable by hpcviewer.

In most cases hpcprof is able to complete the reduction in a matter of minutes, however
for especially large experiments (more than about 100,000 threads or GPU streams [4]) its
multi-node sibling hpcprof-mpi may be substantially faster. hpcprof-mpi is an MPI appli-
cation identical to hpcprof, except that it additionally can exploit multiple compute nodes
during the reduction. In our experience, exploiting 8-10 compute nodes via hpcprof-mpi

can be as much as 5× faster than hpcprof for sufficiently large experiments.

2.4 Presenting Performance Measurements

To enable an analyst to rapidly pinpoint and quantify performance bottlenecks, tools
must present the performance measurements in a way that engages the analyst, focuses
attention on what is important, and automates common analysis subtasks to reduce the
mental effort and frustration of sifting through a sea of measurement details.

To enable rapid analysis of an execution’s performance bottlenecks, we have carefully
designed the hpcviewer - a code-centric presentation tool [2]. It also includes a time-centric
tab [20].

hpcviewer combines a relatively small set of complementary presentation techniques
that, taken together, rapidly focus an analyst’s attention on performance bottlenecks rather
than on unimportant information. To facilitate the goal of rapidly focusing an analyst’s
attention on performance bottlenecks hpcviewer extends several existing presentation tech-
niques. In particular, hpcviewer (1) synthesizes and presents three complementary views
of calling-context-sensitive metrics; (2) treats a procedure’s static structure as first-class
information with respect to both performance metrics and constructing views; (3) enables a
large variety of user-defined metrics to describe performance inefficiency; and (4) automati-
cally expands hot paths based on arbitrary performance metrics — through calling contexts
and static structure — to rapidly highlight important performance data.

The trace tab enables an application developer to visualize how a parallel execution
unfolds over time. This view facilitates identification of important inefficiencies such as
serialization and load imbalance, among others.

10

Chapter 3

Quick Start

This chapter provides a rapid overview of analyzing the performance of an application
using HPCToolkit. It assumes an operational installation of HPCToolkit.

3.1 Guided Tour

HPCToolkit’s work flow is summarized in Figure 3.1 (on page 12) and is organized
around four principal capabilities:

1. measurement of context-sensitive performance metrics while an application executes;

2. binary analysis to recover program structure from CPU and GPU binaries;

3. attribution of performance metrics by correlating dynamic performance metrics with
static program structure; and

4. presentation of performance metrics and associated source code.

To use HPCToolkit to measure and analyze an application’s performance, one first
compiles and links the application for a production run, using full optimization. Second,
one launches an application with HPCToolkit’s measurement tool, hpcrun, which uses
statistical sampling to collect a performance profile. Third, one applies hpcstruct to an
application’s measurement directory to recover program structure information from any
CPU or GPU binary that was measured. Program structure, which includes information
about files, procedures, inlined code, and loops, is used to relate performance measurements
to source code. Fourth, one uses hpcprof to combine information about an application’s
structure with dynamic performance measurements to produce a performance database.
Finally, one explores a performance database with HPCToolkit’s graphical user interface:
hpcviewer which presents both a code-centric analysis of performance metrics and a time-
centric (trace-based) analysis of an execution.

The following subsections explain HPCToolkit’s work flow in more detail.

3.1.1 Compiling an Application

For the most detailed attribution of application performance data using HPCToolkit,
one should compile so as to include with line map information in the generated object

11

Figure 3.1: Overview of HPCToolkit tool’s work flow.

code. This usually means compiling with options similar to ‘-g -O3’. Check your com-
piler’s documentation for information about the right set of options to have the compiler
record information about inlining and the mapping of machine instructions to source lines.
We advise picking options that indicate they will record information that relates machine
instructions to source code without compromising optimization. For instance, the Portland
Group (PGI) compilers, use -gopt in place of -g to collect information without interfering
with optimization.

While HPCToolkit does not need information about the mapping between machine
instructions and source code to function, having such information included in the binary
code by the compiler can be helpful to users trying to interpret performance measurements.
Since compilers can usually provide information about line mappings and inlining for fully-
optimized code, this requirement usually involves a one-time trivial adjustment to the an
application’s build scripts to provide a better experience with tools. Such mapping infor-
mation enables tools such as HPCToolkit, race detectors, and memory analysis tools to
attribute information more precisely.

For statically linked executables, such as those often used on Cray supercomputers, the
final link step is done with hpclink.

3.1.2 Measuring Application Performance

Measurement of application performance takes two different forms depending on whether
your application is dynamically or statically linked. To monitor a dynamically linked ap-
plication, simply use hpcrun to launch the application. To monitor a statically linked
application, the data to be collected is specified by environment variables. In either case,
the application may be sequential, multithreaded or based on MPI. The commands below
give examples for an application named app.

• Dynamically linked applications:

Simply launch your application with hpcrun:

12

[<mpi-launcher>] hpcrun [hpcrun-options] app [app-arguments]

Of course, <mpi-launcher> is only needed for MPI programs and is sometimes a
program like mpiexec or mpirun, or a workload manager’s utilities such as Slurm’s
srun or IBM’s Job Step Manager utility jsrun.

• Statically linked applications:

First, link hpcrun’s monitoring code into app, using hpclink:

hpclink <linker> -o app <linker-arguments>

Then monitor app by passing hpcrun options through environment variables. For
instance:

export HPCRUN_EVENT_LIST="CYCLES"

[<mpi-launcher>] app [app-arguments]

hpclink’s --help option gives a list of environment variables that affect monitoring.
See Chapter 6 for more information.

Any of these commands will produce a measurements database that contains separate mea-
surement information for each MPI rank and thread in the application. The database is
named according the form:

hpctoolkit-app-measurements[-<jobid>]

If the application app is run under control of a recognized batch job scheduler (such as Slurm,
Cobalt, or IBM’s Job Manager), the name of the measurements directory will contain the
corresponding job identifier <jobid>. Currently, the database contains measurements files
for each thread that are named using the following templates:

app-<mpi-rank>-<thread-id>-<host-id>-<process-id>.<generation-id>.hpcrun

app-<mpi-rank>-<thread-id>-<host-id>-<process-id>.<generation-id>.hpctrace

Specifying CPU Sample Sources

HPCToolkit primarily monitors an application using asynchronous sampling. Con-
sequently, the most common option to hpcrun is a list of sample sources that define how
samples are generated. A sample source takes the form of an event name e and howoften,
specified as e@howoften. The specifier howoften may be a number, indicating a period, e.g.
CYCLES@4000001 or it may be f followed by a number, CYCLES@f200 indicating a frequency
in samples/second. For a sample source with event e and period p, after every p instances
of e, a sample is generated that causes hpcrun to inspect the and record information about
the monitored application.

To configure hpcrun with two samples sources, e1@howoften1 and e2@howoften2, use
the following options:

--event e1@howoften1 --event e2@howoften2

To use the same sample sources with an hpclink-ed application, use a command similar to:

export HPCRUN EVENT LIST="e1@howoften1 e2@howoften2"

13

Measuring GPU Computations

One can simply profile and optionally trace computations offloaded onto AMD, Intel,
and NVIDIA GPUs by using one of the following event specifiers:

• -e gpu=nvidia is used with CUDA and OpenMP on NVIDIA GPUs

• -e gpu=amd is used with HIP and OpenMP on AMD GPUs

• -e gpu=level0 is used with Intel’s Level Zero runtime for Data Parallel C++ and
OpenMP

• -e gpu=opencl can be used on any of the GPU platforms.

Adding a -t to hpcrun’s command line when profiling GPU computations will trace
them as well.

For more information about how to use PC sampling (NVIDIA GPUs only) or binary in-
strumentation (Intel GPUs) for instruction-level performance measurement of GPU kernels,
see Chapter 8.

3.1.3 Recovering Program Structure

Typically, hpcstruct is launched without any options, with an argument that is a HPC-
Toolkit measurement directory. hpcstruct identifies the application as well as any shared
libraries and GPU binaries it invokes. It processes each of them and records information its
program structure in the measurements directory. Program structure for a binary includes
information about its source files, procedures, inlined code, loop nests, and statements.

When applied to a measurements directory, hpcstruct analyzes multiple binaries con-
currently by default. It analyzes each small binary using a few threads and each large binary
using more threads.

Although not usually necessary, one can apply hpcstruct to recover program structure
information for a single CPU or GPU binary. To recover static program structure for a
single binary b, use the command:

hpcstruct b

This command analyzes the binary and saves this information in a file named b.hpcstruct.

3.1.4 Analyzing Measurements & Attributing Them to Source Code

To analyze HPCToolkit’s measurements and attribute them to the application’s
source code, use hpcprof, typically invoked as follows:

hpcprof hpctoolkit-app-measurements

This command will produce an HPCToolkit performance database with the name
hpctoolkit-app-database. If this database directory already exists, hpcprof will form a
unique name by appending a random hexadecimal qualifier.

hpcprof performs this analysis in parallel using multithreading. By default all available
threads are used. If this is not wanted (e.g. using sharing a single machine), the thread
count can be specified with -j <threads>.

14

hpcprof usually completes this analysis in a matter of minutes. For especially large
experiments (applications using thousands of threads and/or GPU streams), the sibling
hpcprof-mpimay produce results faster by exploiting additional compute nodes1. Typically
hpcprof-mpi is invoked as follows, using 8 ranks and compute nodes:

<mpi-launcher> -n 8 hpcprof-mpi hpctoolkit-app-measurements

Note that additional options may be needed to grant hpcprof-mpi access to all threads on
each node, check the documentation for your scheduler and MPI implementation for details.

If possible, hpcprof will copy the sources for the application and any libraries into
the resulting database. If the source code was moved since or was mounted at a different
location than when the application was compiled, the resulting database may be missing
some important source files. In these cases, the -R/--replace-path option may be specified
to provide substitute paths based on prefixes. For example, if the application was compiled
from source at /home/joe/app/src/ but it is mounted at /extern/homes/joe/app/src/
when running hpcprof, the source files can be made available by invoking hpcprof as
follows:

hpcprof -R ‘/home/joe/app/src/=/extern/homes/joe/app/src/’ \

hpctoolkit-app-measurements

Note that on systems where MPI applications are restricted to a scratch file system, it is the
users responsibility to copy any wanted source files and make them available to hpcprof.

3.1.5 Presenting Performance Measurements for Interactive Analysis

To interactively view and analyze anHPCToolkit performance database, use hpcviewer.
hpcviewer may be launched from the command line or by double-clicking on its icon on
MacOS or Windows. The following is an example of launching from a command line:

hpcviewer hpctoolkit-app-database

Additional help for hpcviewer can be found in a help pane available from hpcviewer’s Help
menu.

3.1.6 Effective Performance Analysis Techniques

To effectively analyze application performance, consider using one of the following strate-
gies, which are described in more detail in Chapter 4.

• A waste metric, which represents the difference between achieved performance and
potential peak performance is a good way of understanding the potential for tun-
ing the node performance of codes (Section 4.3). hpcviewer supports synthesis of
derived metrics to aid analysis. Derived metrics are specified within hpcviewer us-
ing spreadsheet-like formula. See the hpcviewer help pane for details about how to
specify derived metrics.

• Scalability bottlenecks in parallel codes can be pinpointed by differential analysis of
two profiles with different degrees of parallelism (Section 4.4).

1We recommend running hpcprof-mpi across 8-10 compute nodes. More than this may not improve or
may degrade the overall speed of the analysis.

15

3.2 Additional Guidance

For additional information, consult the rest of this manual and other documentation:
First, we summarize the available documentation and command-line help:

Command-line help.

Each of HPCToolkit’s command-line tools can generate a help message summariz-
ing the tool’s usage, arguments and options. To generate this help message, invoke
the tool with -h or --help.

Man pages.

Man pages are available either via the Internet (http://hpctoolkit.org/documentation.
html) or from a localHPCToolkit installation (<hpctoolkit-installation>/share/
man).

Manuals.

Manuals are available either via the Internet (http://hpctoolkit.org/documentation.
html) or from a localHPCToolkit installation (<hpctoolkit-installation>/share/
doc/hpctoolkit/documentation.html).

Articles and Papers.

There are a number of articles and papers that describe various aspects of HPC-
Toolkit’s measurement, analysis, attribution and presentation technology. They
can be found at http://hpctoolkit.org/publications.html.

16

http://hpctoolkit.org/documentation.html
http://hpctoolkit.org/documentation.html
http://hpctoolkit.org/documentation.html
http://hpctoolkit.org/documentation.html
http://hpctoolkit.org/publications.html

Chapter 4

Effective Strategies for Analyzing
Program Performance

This chapter describes some proven strategies for using performance measurements to
identify performance bottlenecks in both serial and parallel codes.

4.1 Monitoring High-Latency Penalty Events

A very simple and often effective methodology is to profile with respect to cycles and
high-latency penalty events. If HPCToolkit attributes a large number of penalty events
with a particular source-code statement, there is an extremely high likelihood of significant
exposed stalling. This is true even though (1) modern out-of-order processors can overlap
the stall latency of one instruction with nearby independent instructions and (2) some
penalty events “over count”.1 If a source-code statement incurs a large number of penalty
events and it also consumes a non-trivial amount of cycles, then this region of code is an
opportunity for optimization. Examples of good penalty events are last-level cache misses
and TLB misses.

4.2 Computing Derived Metrics

Modern computer systems provide access to a rich set of hardware performance counters
that can directly measure various aspects of a program’s performance. Counters in the
processor core and memory hierarchy enable one to collect measures of work (e.g., operations
performed), resource consumption (e.g., cycles), and inefficiency (e.g., stall cycles). One can
also measure time using system timers.

Values of individual metrics are of limited use by themselves. For instance, knowing the
count of cache misses for a loop or routine is of little value by itself; only when combined with
other information such as the number of instructions executed or the total number of cache
accesses does the data become informative. While a developer might not mind using mental
arithmetic to evaluate the relationship between a pair of metrics for a particular program
scope (e.g., a loop or a procedure), doing this for many program scopes is exhausting.

1For example, performance monitoring units often categorize a prefetch as a cache miss.

17

Figure 4.1: Computing a derived metric (cycles per instruction) in hpcviewer.

To address this problem, hpcviewer supports calculation of derived metrics. hpcviewer

provides an interface that enables a user to specify spreadsheet-like formula that can be
used to calculate a derived metric for every program scope.

Figure 4.1 shows how to use hpcviewer to compute a cycles/instruction derived met-
ric from measured metrics PAPI_TOT_CYC and PAPI_TOT_INS; these metrics correspond to
cycles and total instructions executed measured with the PAPI hardware counter interface.
To compute a derived metric, one first depresses the button marked f(x) above the metric
pane; that will cause the pane for computing a derived metric to appear. Next, one types
in the formula for the metric of interest. When specifying a formula, existing columns of
metric data are referred to using a positional name $n to refer to the nth column, where the
first column is written as $0. The metric pane shows the formula $1/$3. Here, $1 refers to
the column of data representing the exclusive value for PAPI_TOT_CYC and $3 refers to the
column of data representing the exclusive value for PAPI_TOT_INS.2 Positional names for

2An exclusive metric for a scope refers to the quantity of the metric measured for that scope alone;
an inclusive metric for a scope represents the value measured for that scope as well as costs incurred by

18

Figure 4.2: Displaying the new cycles/ instruction derived metric in hpcviewer.

metrics you use in your formula can be determined using the Metric pull-down menu in the
pane. If you select your metric of choice using the pull-down, you can insert its positional
name into the formula using the insert metric button, or you can simply type the positional
name directly into the formula.

At the bottom of the derived metric pane, one can specify a name for the new metric.
One also has the option to indicate that the derived metric column should report for each
scope what percent of the total its quantity represents; for a metric that is a ratio, computing
a percent of the total is not meaningful, so we leave the box unchecked. After clicking the
OK button, the derived metric pane will disappear and the new metric will appear as the
rightmost column in the metric pane. If the metric pane is already filled with other columns
of metric, you may need to scroll right in the pane to see the new metric. Alternatively, you
can use the metric check-box pane (selected by depressing the button to the right of f(x)
above the metric pane) to hide some of the existing metrics so that there will be enough

any functions it calls. In hpcviewer, inclusive metric columns are marked with “(I)” and exclusive metric
columns are marked with “(E).”

19

room on the screen to display the new metric. Figure 4.2 shows the resulting hpcviewer

display after clicking OK to add the derived metric.

The following sections describe several types of derived metrics that are of particular
use to gain insight into performance bottlenecks and opportunities for tuning.

4.3 Pinpointing and Quantifying Inefficiencies

While knowing where a program spends most of its time or executes most of its floating
point operations may be interesting, such information may not suffice to identify the biggest
targets of opportunity for improving program performance. For program tuning, it is less
important to know how much resources (e.g., time, instructions) were consumed in each
program context than knowing where resources were consumed inefficiently.

To identify performance problems, it might initially seem appealing to compute ratios
to see how many events per cycle occur in each program context. For instance, one might
compute ratios such as FLOPs/cycle, instructions/cycle, or cache miss ratios. However,
using such ratios as a sorting key to identify inefficient program contexts can misdirect
a user’s attention. There may be program contexts (e.g., loops) in which computation is
terribly inefficient (e.g., with low operation counts per cycle); however, some or all of the
least efficient contexts may not account for a significant amount of execution time. Just
because a loop is inefficient doesn’t mean that it is important for tuning.

The best opportunities for tuning are where the aggregate performance losses are great-
est. For instance, consider a program with two loops. The first loop might account for 90%
of the execution time and run at 50% of peak performance. The second loop might account
for 10% of the execution time, but only achieve 12% of peak performance. In this case, the
total performance loss in the first loop accounts for 50% of the first loop’s execution time,
which corresponds to 45% of the total program execution time. The 88% performance loss
in the second loop would account for only 8.8% of the program’s execution time. In this
case, tuning the first loop has a greater potential for improving the program performance
even though the second loop is less efficient.

A good way to focus on inefficiency directly is with a derived waste metric. Fortunately,
it is easy to compute such useful metrics. However, there is no one right measure of waste
for all codes. Depending upon what one expects as the rate-limiting resource (e.g., floating-
point computation, memory bandwidth, etc.), one can define an appropriate waste metric
(e.g., FLOP opportunities missed, bandwidth not consumed) and sort by that.

For instance, in a floating-point intensive code, one might consider keeping the floating
point pipeline full as a metric of success. One can directly quantify and pinpoint losses
from failing to keep the floating point pipeline full regardless of why this occurs. One
can pinpoint and quantify losses of this nature by computing a floating-point waste metric
that is calculated as the difference between the potential number of calculations that could
have been performed if the computation was running at its peak rate minus the actual
number that were performed. To compute the number of calculations that could have been
completed in each scope, multiply the total number of cycles spent in the scope by the
peak rate of operations per cycle. Using hpcviewer, one can specify a formula to compute

20

Figure 4.3: Computing a floating point waste metric in hpcviewer.

such a derived metric and it will compute the value of the derived metric for every scope.
Figure 4.3 shows the specification of this floating-point waste metric for a code.3

Sorting by a waste metric will rank order scopes to show the scopes with the greatest
waste. Such scopes correspond directly to those that contain the greatest opportunities for
improving overall program performance. A waste metric will typically highlight loops where

• a lot of time is spent computing efficiently, but the aggregate inefficiencies accumulate,

• less time is spent computing, but the computation is rather inefficient, and

• scopes such as copy loops that contain no computation at all, which represent a
complete waste according to a metric such as floating point waste.

Beyond identifying and quantifying opportunities for tuning with a waste metric, one
can compute a companion derived metric relative efficiency metric to help understand how
easy it might be to improve performance. A scope running at very high efficiency will
typically be much harder to tune than running at low efficiency. For our floating-point

3Many recent processors have trouble accurately counting floating-point operations accurately, which is
unfortunate. If your processor can’t accurately count floating-point operations, a floating-point waste metric
will be less useful.

21

Figure 4.4: Computing floating point efficiency in percent using hpcviewer.

waste metric, we one can compute the floating point efficiency metric by dividing measured
FLOPs by potential peak FLOPs and multiplying the quantity by 100. Figure 4.4 shows
the specification of this floating-point efficiency metric for a code.

Scopes that rank high according to a waste metric and low according to a companion
relative efficiency metric often make the best targets for optimization. Figure 4.5 shows
the specification of this floating-point efficiency metric for a code. Figure 4.5 shows an
hpcviewer display that shows the top two routines that collectively account for 32.2%
of the floating point waste in a reactive turbulent combustion code. The second routine
(ratt) is expanded to show the loops and statements within. While the overall floating
point efficiency for ratt is at 6.6% of peak (shown in scientific notation in the hpcviewer

display), the most costly loop in ratt that accounts for 7.3% of the floating point waste is
executing at only 0.114% efficiency. Identifying such sources of inefficiency is the first step
towards improving performance via tuning.

22

Figure 4.5: Using floating point waste and the percent of floating point efficiency to
evaluate opportunities for optimization.

4.4 Pinpointing and Quantifying Scalability Bottlenecks

On large-scale parallel systems, identifying impediments to scalability is of paramount
importance. On today’s systems fashioned out of multicore processors, two kinds of scala-
bility are of particular interest:

• scaling within nodes, and

• scaling across the entire system.

HPCToolkit can be used to readily pinpoint both kinds of bottlenecks. Using call path
profiles collected by hpcrun, it is possible to quantify and pinpoint scalability bottlenecks
of any kind, regardless of cause.

To pinpoint scalability bottlenecks in parallel programs, we use differential profiling —
mathematically combining corresponding buckets of two or more execution profiles. Dif-
ferential profiling was first described by McKenney [11]; he used differential profiling to

23

compare two flat execution profiles. Differencing of flat profiles is useful for identifying
what parts of a program incur different costs in two executions. Building upon McKenney’s
idea of differential profiling, we compare call path profiles of parallel executions at different
scales to pinpoint scalability bottlenecks. Differential analysis of call path profiles pinpoints
not only differences between two executions (in this case scalability losses), but the con-
texts in which those differences occur. Associating changes in cost with full calling contexts
is particularly important for pinpointing context-dependent behavior. Context-dependent
behavior is common in parallel programs. For instance, in message passing programs, the
time spent by a call to MPI_Wait depends upon the context in which it is called. Similarly,
how the performance of a communication event scales as the number of processors in a
parallel execution increases depends upon a variety of factors such as whether the size of
the data transferred increases and whether the communication is collective or not.

4.4.1 Scalability Analysis Using Expectations

Application developers have expectations about how the performance of their code
should scale as the number of processors in a parallel execution increases. Namely,

• when different numbers of processors are used to solve the same problem (strong
scaling), one expects an execution’s speedup to increase linearly with the number of
processors employed;

• when different numbers of processors are used but the amount of computation per
processor is held constant (weak scaling), one expects the execution time on a different
number of processors to be the same.

In both of these situations, a code developer can express their expectations for how
performance will scale as a formula that can be used to predict execution performance
on a different number of processors. One’s expectations about how overall application
performance should scale can be applied to each context in a program to pinpoint and
quantify deviations from expected scaling. Specifically, one can scale and difference the
performance of an application on different numbers of processors to pinpoint contexts that
are not scaling ideally.

To pinpoint and quantify scalability bottlenecks in a parallel application, we first use
hpcrun to a collect call path profile for an application on two different numbers of processors.
Let Ep be an execution on p processors and Eq be an execution on q processors. Without
loss of generality, assume that q > p.

In our analysis, we consider both inclusive and exclusive costs for CCT nodes. The
inclusive cost at n represents the sum of all costs attributed to n and any of its descendants
in the CCT, and is denoted by I(n). The exclusive cost at n represents the sum of all costs
attributed strictly to n, and we denote it by E(n). If n is an interior node in a CCT, it
represents an invocation of a procedure. If n is a leaf in a CCT, it represents a statement
inside some procedure. For leaves, their inclusive and exclusive costs are equal.

It is useful to perform scalability analysis for both inclusive and exclusive costs; if the
loss of scalability attributed to the inclusive costs of a function invocation is roughly equal
to the loss of scalability due to its exclusive costs, then we know that the computation
in that function invocation does not scale. However, if the loss of scalability attributed

24

Figure 4.6: Computing the scaling loss when weak scaling a white dwarf detonation
simulation with FLASH3 from 256 to 8192 cores. For weak scaling, the time on an MPI rank
in each of the simulations will be the same. In the figure, column 0 represents the inclusive
cost for one MPI rank in a 256-core simulation; column 2 represents the inclusive cost
for one MPI rank in an 8192-core simulation. The difference between these two columns,
computed as $2-$0, represents the excess work present in the larger simulation for each
unique program context in the calling context tree. Dividing that by the total time in
the 8192-core execution @2 gives the fraction of wasted time. Multiplying through by 100
gives the percent of the time wasted in the 8192-core execution, which corresponds to the
% scalability loss.

to a function invocation’s inclusive costs outweighs the loss of scalability accounted for by
exclusive costs, we need to explore the scalability of the function’s callees.

Given CCTs for an ensemble of executions, the next step to analyzing the scalability
of their performance is to clearly define our expectations. Next, we describe performance
expectations for weak scaling and intuitive metrics that represent how much performance
deviates from our expectations. More information about our scalability analysis technique
can be found elsewhere [5, 19].

Weak Scaling

Consider two weak scaling experiments executed on p and q processors, respectively,
p < q. In Figure 4.6 shows how we can use a derived metric to compute and attribute
scalability losses. Here, we compute the difference in inclusive cycles spent on one core of a
8192-core run and one core in a 256-core run in a weak scaling experiment. If the code had
perfect weak scaling, the time for an MPI rank in each of the executions would be identical.

25

Figure 4.7: Using the fraction the scalability loss metric of Figure 4.6 to rank order loop
nests by their scaling loss.

In this case, they are not. We compute the excess work by computing the difference for
each scope between the time on the 8192-core run and the time on the 256-core core run.
We normalize the differences of the time spent in the two runs by dividing then by the total
time spent on the 8192-core run. This yields the fraction of wasted effort for each scope
when scaling from 256 to 8192 cores. Finally, we multiply these resuls by 100 to compute
the % scalability loss. This example shows how one can compute a derived metric to that
pinpoints and quantifies scaling losses across different node counts of a Blue Gene/P system.

A similar analysis can be applied to compute scaling losses between jobs that use different
numbers of core counts on individual processors. Figure 4.7 shows the result of computing
the scaling loss for each loop nest when scaling from one to eight cores on a multicore node
and rank order loop nests by their scaling loss metric. Here, we simply compute the scaling
loss as the difference between the cycle counts of the eight-core and the one-core runs,
divided through by the aggregate cost of the process executing on eight cores. This figure
shows the scaling lost written in scientific notation as a fraction rather than multiplying
through by 100 to yield a percent. In this figure, we examine scaling losses in the flat view,
showing them for each loop nest. The source pane shows the loop nest responsible for the
greatest scaling loss when scaling from one to eight cores. Unsurprisingly, the loop with the
worst scaling loss is very memory intensive. Memory bandwidth is a precious commodity
on multicore processors.

While we have shown how to compute and attribute the fraction of excess work in a weak
scaling experiment, one can compute a similar quantity for experiments with strong scaling.

26

When differencing the costs summed across all of the threads in a pair of strong-scaling
experiments, one uses exactly the same approach as shown in Figure 4.6. If comparing
weak scaling costs summed across all ranks in p and q core executions, one can simply scale
the aggregate costs by 1/p and 1/q respectively before differencing them.

Exploring Scaling Losses

Scaling losses can be explored in hpcviewer using any of its three views.

• Top-down view. This view represents the dynamic calling contexts (call paths) in
which costs were incurred.

• Bottom-up view. This view enables one to look upward along call paths. This view
is particularly useful for understanding the performance of software components or
procedures that are used in more than one context, such as communication library
routines.

• Flat view. This view organizes performance measurement data according to the static
structure of an application. All costs incurred in any calling context by a procedure
are aggregated together in the flat view.

hpcviewer enables developers to explore top-down, bottom-up, and flat views of CCTs
annotated with costs, helping to quickly pinpoint performance bottlenecks. Typically, one
begins analyzing an application’s scalability and performance using the top-down calling
context tree view. Using this view, one can readily see how costs and scalability losses are
associated with different calling contexts. If costs or scalability losses are associated with
only a few calling contexts, then this view suffices for identifying the bottlenecks. When
scalability losses are spread among many calling contexts, e.g., among different invocations
of MPI_Wait, often it is useful to switch to the bottom-up of the data to see if many losses
are due to the same underlying cause. In the bottom-up view, one can sort routines by
their exclusive scalability losses and then look upward to see how these losses accumulate
from the different calling contexts in which the routine was invoked.

Scaling loss based on excess work is intuitive; perfect scaling corresponds to a excess work
value of 0, sublinear scaling yields positive values, and superlinear scaling yields negative
values. Typically, CCTs for SPMD programs have similar structure. If CCTs for different
executions diverge, using hpcviewer to compute and report excess work will highlight these
program regions.

Inclusive excess work and exclusive excess work serve as useful measures of scalability
associated with nodes in a calling context tree (CCT). By computing both metrics, one can
determine whether the application scales well or not at a CCT node and also pinpoint the
cause of any lack of scaling. If a node for a function in the CCT has comparable positive
values for both inclusive excess work and exclusive excess work, then the loss of scaling
is due to computation in the function itself. However, if the inclusive excess work for the
function outweighs that accounted for by its exclusive costs, then one should explore the
scalability of its callees. To isolate code that is an impediment to scalable performance, one
can use the hot path button in hpcviewer to trace a path down through the CCT to see
where the cost is incurred.

27

28

Chapter 5

Monitoring Dynamically-linked
Applications with hpcrun

This chapter describes the mechanics of using hpcrun and hpclink to profile an appli-
cation and collect performance data. For advice on how to choose events, perform scaling
studies, etc., see Chapter 4 Effective Strategies for Analyzing Program Performance.

5.1 Using hpcrun

The hpcrun launch script is used to run an application and collect call path profiles
and call path traces data for dynamically linked binaries. For dynamically linked programs,
this requires no change to the program source and no change to the build procedure. You
should build your application natively with full optimization. hpcrun inserts its profiling
code into the application at runtime via LD_PRELOAD.

hpcrun monitors the execution of applications on a CPU using asynchronous sampling.
If hpcrun is used without any arguments to measure a program

hpcrun app arg ...

it will the measure the program’s execution by sampling its CPUTIME and collect a call
path profile for each thread in the execution. More about the CPUTIME metric can be
found in Section 5.3.3.

In addition to a call path profile, hpcrun can collect a call path trace of an execution if
the -t (or --trace) option is used turn on tracing. The following use of hpcrun will collect
both a call path profile and a call path trace of CPU execution using the default CPUTIME
sample source.

hpcrun -t app arg ...

Traces are most useful for understanding the execution dynamics of multithreaded or multi-
process applications; however, you may find a trace of a single-threaded application to be
useful to understand how an execution unfolds over time.

While CPUTIME is used as the default sample source if no other sample source is spec-
ified, many other sample sources are available. Typically, one uses the -e (or --event) to

29

specify a sample source and sampling rate.1 Sample sources are specified as ‘event@howoften’
where event is the name of the source and howoften is either a number specifying the pe-
riod (threshold) for that event, or f followed by a number, e.g., @f100 specifying a target
sampling frequency for the event in samples/second.2 Note that a higher period implies a
lower rate of sampling. The -e option may be used multiple times to specify that multiple
sample sources be used for measuring an execution.

The basic syntax for profiling an application with hpcrun is:

hpcrun -t -e event@howoften ... app arg ...

For example, to profile an application using hardware counter sample sources provided
by Linux perf_events and sample cycles at 300 times/second (the default sampling fre-
quency) and sample every 4,000,000 instructions, you would use:

hpcrun -e CYCLES -e INSTRUCTIONS@4000000 app arg ...

The units for timer-based sample sources (CPUTIME and REALTIME are microseconds, so
to sample an application with tracing every 5,000 microseconds (200 times/second), you
would use:

hpcrun -t -e CPUTIME@5000 app arg ...

hpcrun stores its raw performance data in a measurements directory with the program
name in the directory name. On systems with a batch job scheduler (eg, PBS) the name of
the job is appended to the directory name.

hpctoolkit-app-measurements[-jobid]

It is best to use a different measurements directory for each run. So, if you’re using
hpcrun on a local workstation without a job launcher, you can use the ‘-o dirname’ option
to specify an alternate directory name.

For programs that use their own launch script (eg, mpirun or mpiexec for MPI), put
the application’s run script on the outside (first) and hpcrun on the inside (second) on the
command line. For example,

mpirun -n 4 hpcrun -e CYCLES mpiapp arg ...

Note that hpcrun is intended for profiling dynamically linked binaries. It will not work
well if used to profile a shell script. At best, you would be profiling the shell interpreter,
not the script commands, and sometimes this will fail outright.

It is possible to use hpcrun to launch a statically linked binary, but there are two prob-
lems with this. First, it is still necessary to build the binary with hpclink. Second, static
binaries are commonly used on parallel clusters that require running the binary directly
and do not accept a launch script. However, if your system allows it, and if the binary
was produced with hpclink, then hpcrun will set the correct environment variables for
profiling statically or dynamically linked binaries. All that hpcrun really does is set some
environment variables (including LD_PRELOAD) and exec the binary.

1GPU and OpenMP measurement events don’t accept a rate.
2Frequency-based sampling and the frequency-based notation for howoften is only available for sample

sources managed by Linux perf events. For Linux perf events, HPCToolkit uses a default sampling
frequency of 300 samples/second.

30

5.1.1 If hpcrun causes your application to fail

hpcrun can cause applications to fail in certain circumstances. Here, we describe two
kind of failures that may arise and how to sidestep them.

hpcrun causes failures related to loading or using shared libraries

Unfortunately, the Glibc implementations used today on most platforms have known
bugs monitoring loading and unloading of shared libraries and calls to a shared library’s
API. While the best approach for coping with these problems is to use a system running
Glibc 2.35 or later, for most people, this is not an option: the system administrator picks
the operating system version, which determines the Glibc version available to developers.

To understand what kinds of problems that you may encounter with shared libraries and
how you can work around them, it is helpful to understand how HPCToolkit monitors
shared libraries. On Power and x86_64 architectures, by default hpcrun uses LD_AUDIT to
monitor an application’s use of dynamic libraries. Use of LD_AUDIT is the only strategy
for monitoring shared libraries that will not cause a change in application behavior when
libraries contain a RUNPATH. However, Glibc’s implementation of LD_AUDIT has a number of
bugs that may crash the application:

• Until Glibc 2.35, most applications running on ARM will crash. This was caused by
a fatal flaw in Glibc’s PLT handler for ARM, where an argument register that should
have been saved was instead replaced with a junk pointer value. This register is used
to return C/C++ struct values from functions and methods, including some C++
constructors.

• Until Glibc 2.35, applications and libraries using dlmopen will crash. While most
applications do not use dlmopen, an example of a library that does is Intel’s GTPin,
which hpcrun uses to instrument Intel GPU code.

• Applications and libraries using significant amounts of static TLS space may crash
with the message “cannot allocate memory in static TLS block.” This is caused
by a flaw in Glibc causing it to allocate insufficient static TLS space when LD_AUDIT

is enabled. For Glibc 2.35 and newer, setting the environment variable

export GLIBC_TUNABLES=glibc.rtld.optional_static_tls=0x1000000

will instruct Glibc to allocate 16MB of static TLS memory per thread, in our experi-
ence this is far more than any application will use (however the value can be adjusted
freely). For older Glibc, the only option is to disable hpcrun’s use of LD_AUDIT.

The following options direct hpcrun to adjust the strategy it uses for monitoring dynamic
libraries. We suggest that you don’t consider using any of these options unless your program
fails using hpcrun’s defaults.

--disable-auditor This option instructs hpcrun to track dynamic library operations by
intercepting dlopen and dlclose instead of using LD_AUDIT. Note that this alternate
approach can cause problem with libraries and applications that specify a RUNPATH.

31

--enable-auditor This option is default, except on ARM or when Intel GTPin instru-
mentation is enabled. Passing this option instructs hpcrun to use LD_AUDIT in all
cases.

--disable-auditor-got-rewriting When using an LD AUDIT, Glibc unnecessarily inter-
cepts every call to a function in a shared library. hpcrun avoids this overhead by
rewriting each shared library’s global offset table (GOT). Such rewriting is tricky.
This option can be used to disable GOT rewriting if it is believed that the rewriting
is causing the application to fail.

--namespace-single dlmopen may load a shared library into an alternate namespace,
which crashes on Glibc until 2.35. This option instructs hpcrun to override dlmopen

to instead load all shared libraries within the application namespace. This may sig-
nificantly change application behavior, but may be helpful to avoid crashing. This
option is default when Intel GTPin instrumentation is enabled.

--namespace-multiple This option is the opposite of --namespace-single, and will
instruct hpcrun to not override dlmopen and thus retain its normal function. This
option is default except when Intel GTPin instrumentation is enabled.

If your code fails to find libraries when it is monitoring your code by wrapping dlopen

and dlclose rather than using LD_AUDIT, you can sidestep this problem by adding any
library paths listed in the RUNPATH of your application or library to your LD_LIBRARY_PATH
environment variable before launching hpcrun.

hpcrun causes your application to fail when gprof instrumentation is present

When an application has been compiled with the compiler flag -pg, the compiler adds
instrumentation to collect performance measurement data for the gprof profiler. Measuring
application performance with HPCToolkit’s measurement subsystem and gprof instru-
mentation active in the same execution may cause the execution to abort. One can detect
the presence of gprof instrumentation in an application by the presence of __monstartup
and _mcleanup symbols in a executable. One can disable gprof instrumentation when mea-
suring the performance of a dynamically-linked application by using the --disable-gprof
argument to hpcrun.

5.2 Hardware Counter Event Names

HPCToolkit uses libpfm4 [10] to translate from an event name string to an event code
recognized by the kernel. An event name is case insensitive and is defined as followed:

[pmu::][event_name][:unit_mask][:modifier|:modifier=val]

• pmu. Optional name of the PMU (group of events) to which the event belongs to.
This is useful to disambiguate events in case events from difference sources have the
same name. If no pmu is specified, the first match event is used.

32

• event name. The name of the event. It must be the complete name, partial matches
are not accepted.

• unit mask. Some events can be refined using sub-events. A unit mask designates
an optional sub-event. An event may have multiple unit masks and it is possible to
combine them (for some events) by repeating :unit mask pattern.

• modifier. A modifier is an optional filter that restricts when an event counts. The
form of a modifier may be either :modifier or :modifier=val. For modifiers without
a value, the presence of the modifier is interpreted as a restriction. Events may allow
use of multiple modifiers at the same time.

– hardware event modifiers. Some hardware events support one or more modi-
fiers that restrict counting to a subset of events. For instance, on an Intel Broad-
well EP, one can add a modifier to MEM_LOAD_UOPS_RETIRED to count only load
operations that are an L2_HIT or an L2_MISS. For information about all modifiers
for hardware events, one can direct HPCToolkit’s measurement subsystem to
list all native events and their modifiers as described in Section 5.3.

– precise ip. For some events, it is possible to control the amount of skid. Skid
is a measure of how many instructions may execute between an event and the
PC where the event is reported. Smaller skid enables more accurate attribu-
tion of events to instructions. Without a skid modifier, hpcrun allows arbitrary
skid because some architectures don’t support anything more precise. One may
optionally specify one of the following as a skid modifier:

∗ :p : a sample must have constant skid.

∗ :pp : a sample is requested to have 0 skid.

∗ :ppp : a sample must have 0 skid.

∗ :P : autodetect the least skid possible.

NOTE: If the kernel or the hardware does not support the specified value of the
skid, no error message will be reported but no samples will be recorded.

5.3 Sample Sources

This section provides an overview of how to use sample sources supported by HPC-
Toolkit. To see a list of the available sample sources and events that hpcrun supports, use
‘hpcrun -L’ (dynamic) or set ‘HPCRUN_EVENT_LIST=LIST’ (static). Note that on systems
with separate compute nodes, it is best to run this on a compute node.

5.3.1 Linux perf events

Linux perf events provides a powerful interface that supports measurement of both ap-
plication execution and kernel activity. Using perf events, one can measure both hardware
and software events. Using a processor’s hardware performance monitoring unit (PMU), the
perf events interface can measure an execution using any hardware counter supported by
the PMU. Examples of hardware events include cycles, instructions completed, cache misses,

33

and stall cycles. Using instrumentation built in to the Linux kernel, the perf events inter-
face can measure software events. Examples of software events include page faults, context
switches, and CPU migrations.

Capabilities of HPCToolkit’s perf events Interface

Frequency-based sampling. The Linux perf events interface supports frequency-based
sampling. With frequency-based sampling, the kernel automatically selects and adjusts
an event period with the aim of delivering samples for that event at a target sampling
frequency.3 Unless a user explicitly specifies an event count threshold for an event, HPC-
Toolkit’s measurement interface will use frequency-based sampling by default. HPCToolkit’s
default sampling frequency is min(300,M−1), where M is the value specified in the system
configuration file /proc/sys/kernel/perf_event_max_sample_rate.

For circumstances where the user wants to use frequency-based sampling but HPC-
Toolkit’s default sampling frequency is inappropriate, one can specify the target sampling
frequency for a particular event using the notation event@frate when specifying an event or
change the default sampling frequency. When measuring a dynamically-linked executable
using hpcrun, one can change the default sampling frequency using hpcrun’s -c option.
To set a new default sampling frequency for a statically-linked executable instrumented
with hpclink, set the HPCRUN_PERF_COUNT environment variable. The section below enti-
tled Launching provides examples of how to monitor an execution using frequency-based
sampling.

Multiplexing. Using multiplexing enables one to monitor more events in a single execu-
tion than the number of hardware counters a processor can support for each thread. The
number of events that can be monitored in a single execution is only limited by the maxi-
mum number of concurrent events that the kernel will allow a user to multiplex using the
perf events interface.

When more events are specified than can be monitored simultaneously using a thread’s
hardware counters,4 the kernel will employ multiplexing and divide the set of events to be
monitored into groups, monitor only one group of events at a time, and cycle repeatedly
through the groups as a program executes.

For applications that have very regular, steady state behavior, e.g., an iterative code
with lots of iterations, multiplexing will yield results that are suitably representative of
execution behavior. However, for executions that consist of unique short phases, measure-
ments collected using multiplexing may not accurately represent the execution behavior.
To obtain more accurate measurements, one can run an application multiple times and in
each run collect a subset of events that can be measured without multiplexing. Results
from several such executions can be imported into HPCToolkit’s hpcviewer and analyzed
together.

3The kernel may be unable to deliver the desired frequency if there are fewer events per second than the
desired frequency.

4How many events can be monitored simultaneously on a particular processor may depend on the events
specified.

34

Thread blocking. When a program executes, a thread may block waiting for the kernel
to complete some operation on its behalf. For instance, a thread may block waiting for data
to become available so that a read operation can complete. On systems running Linux 4.3
or newer, one can use the perf events sample source to monitor how much time a thread
is blocked and where the blocking occurs. To measure the time a thread spends blocked,
one can profile with BLOCKTIME event and another time-based event, such as CYCLES. The
BLOCKTIME event shouldn’t have any frequency or period specified, whereas CYCLES may
have a frequency or period specified.

Launching

When sampling with native events, by default hpcrun will profile using perf events.
To force HPCToolkit to use PAPI rather than perf events to oversee monitoring of a PMU
event (assuming that HPCToolkit has been configured to include support for PAPI), one
must prefix the event with ‘papi::’ as follows:

hpcrun -e papi::CYCLES

For PAPI presets, there is no need to prefix the event with ‘papi::’. For instance it is
sufficient to specify PAPI_TOT_CYC event without any prefix to profile using PAPI. For more
information about using PAPI, see Section 5.3.2.

Below, we provide some examples of various ways to measure CYCLES and INSTRUCTIONS

using HPCToolkit’s perf events measurement substrate:

To sample an execution 100 times per second (frequency-based sampling) counting
CYCLES and 100 times a second counting INSTRUCTIONS:

hpcrun -e CYCLES@f100 -e INSTRUCTIONS@f100 ...

To sample an execution every 1,000,000 cycles and every 1,000,000 instructions using
period-based sampling:

hpcrun -e CYCLES@1000000 -e INSTRUCTIONS@1000000

By default, hpcrun uses frequency-based sampling with the rate 300 samples per second
per event type. Hence the following command causes HPCToolkit to sample CYCLES at
300 samples per second and INSTRUCTIONS at 300 samples per second:

hpcrun -e CYCLES -e INSTRUCTIONS ...

One can specify a different default sampling period or frequency using the -c option.
The command below will sample CYCLES and INSTRUCTIONS at 200 samples per second
each:

hpcrun -c f200 -e CYCLES -e INSTRUCTIONS ...

35

Notes

• Linux perf events uses one file descriptor for each event to be monitored. Fur-
thermore, since hpcrun generates one hpcrun file for each thread, and an additional
hpctrace file if traces is enabled. Hence for e events and t threads, the required number
of file descriptors is:

t× e+ t+ t (if trace is enabled)

For instance, if one profiles a multi-threaded program that executes with 500 threads
using 4 events, then the required number of file descriptors is

500 threads × 4 events + 500 hpcrun files + 500 hpctrace files
= 3000 file descriptors

If the number of file descriptors exceeds the number of maximum number of open files,
then the program will crash. To remedy this issue, one needs to increase the number
of maximum number of open files allowed.

• When a system is configured with suitable permissions, HPCToolkit will sample call
stacks within the Linux kernel in addition to application-level call stacks. This
feature can be useful to measure kernel activity on behalf of a thread (e.g., zero-
filling allocated pages when they are first touched) or to observe where, why, and
how long a thread blocks. For a user to be able to sample kernel call stacks,
the configuration file /proc/sys/kernel/perf_event_paranoid must have a value
≤ 1. To associate addresses in kernel call paths with function names, the value of
/proc/sys/kernel/kptr_restrict must be 0 (number zero). If these settings are
not configured in this way on your system, you will need someone with administrator
privileges to change them for you to be able to sample call stacks within the kernel.

• Due to a limitation present in all Linux kernel versions currently available, HPC-
Toolkit’s measurement subsystem can only approximate a thread’s blocking time.
At present, Linux reports when a thread blocks but does not report when a thread
resumes execution. For that reason, HPCToolkit’s measurement subsystem approxi-
mates the time a thread spends blocked using sampling as the time between when the
thread blocks and when the thread receives its first sample after resuming execution.

• Users need to be cautious when considering measured counts of events that have been
collected using hardware counter multiplexing. Currently, it is not obvious to a user
if a metric was measured using a multiplexed counter. This information is present in
the measurements but is not currently visible in hpcviewer.

5.3.2 PAPI

PAPI, the Performance API, is a library for providing access to the hardware perfor-
mance counters. PAPI aims to provide a consistent, high-level interface that consists of a
universal set of event names that can be used to measure performance on any processor,
independent of any processor-specific event names. In some cases, PAPI event names rep-
resent quantities synthesized by combining measurements based on multiple native events

36

PAPI_BR_INS Branch instructions

PAPI_BR_MSP Conditional branch instructions mispredicted

PAPI_FP_INS Floating point instructions

PAPI_FP_OPS Floating point operations

PAPI_L1_DCA Level 1 data cache accesses

PAPI_L1_DCM Level 1 data cache misses

PAPI_L1_ICH Level 1 instruction cache hits

PAPI_L1_ICM Level 1 instruction cache misses

PAPI_L2_DCA Level 2 data cache accesses

PAPI_L2_ICM Level 2 instruction cache misses

PAPI_L2_TCM Level 2 cache misses

PAPI_LD_INS Load instructions

PAPI_SR_INS Store instructions

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_TOT_CYC Total cycles

PAPI_TOT_IIS Instructions issued

PAPI_TOT_INS Instructions completed

Table 5.1: Some commonly available PAPI events. The exact set of available events is
system dependent.

available on a particular processor. For instance, in some cases PAPI reports total cache
misses by measuring and combining data misses and instruction misses. PAPI is available
from the University of Tennessee at http://icl.cs.utk.edu/papi.

PAPI focuses mostly on in-core CPU events: cycles, cache misses, floating point opera-
tions, mispredicted branches, etc. For example, the following command samples total cycles
and L2 cache misses.

hpcrun -e PAPI_TOT_CYC@15000000 -e PAPI_L2_TCM@400000 app arg ...

The precise set of PAPI preset and native events is highly system dependent. Commonly,
there are events for machine cycles, cache misses, floating point operations and other more
system specific events. However, there are restrictions both on how many events can be
sampled at one time and on what events may be sampled together and both restrictions are
system dependent. Table 5.1 contains a list of commonly available PAPI events.

To see what PAPI events are available on your system, use the papi_avail command
from the bin directory in your PAPI installation. The event must be both available and
not derived to be usable for sampling. The command papi_native_avail displays the
machine’s native events. Note that on systems with separate compute nodes, you normally
need to run papi_avail on one of the compute nodes.

When selecting the period for PAPI events, aim for a rate of approximately a few
hundred samples per second. So, roughly several million or tens of million for total cycles
or a few hundred thousand for cache misses. PAPI and hpcrun will tolerate sampling rates
as high as 1,000 or even 10,000 samples per second (or more). However, rates higher than

37

http://icl.cs.utk.edu/papi

a few hundred samples per second will only increase measurement overhead and distort the
execution of your program; they won’t yield more accurate results.

Beginning with Linux kernel version 2.6.32, support for accessing performance counters
using the Linux perf events performance monitoring subsystem is built into the kernel.
perf events provides a measurement substrate for PAPI on Linux.

On modern Linux systems that include support for perf_events, PAPI is only recom-
mended for monitoring events outside the scope of the perf_events interface.

Proxy Sampling HPCToolkit supports proxy sampling for derived PAPI events. For
HPCToolkit to sample a PAPI event directly, the event must not be derived and must
trigger hardware interrupts when a threshold is exceeded. For events that cannot trigger
interrupts directly, HPCToolkit’s proxy sampling sample on another event that is supported
directly and then reads the counter for the derived event. In this case, a native event can
serve as a proxy for one or more derived events.

To use proxy sampling, specify the hpcrun command line as usual and be sure to include
at least one non-derived PAPI event. The derived events will be accumulated automatically
when processing a sample trigger for a native event. We recommend adding PAPI_TOT_CYC

as a native event when using proxy sampling, but proxy sampling will gather data as long
as the event set contains at least one non-derived PAPI event. Proxy sampling requires one
non-derived PAPI event to serve as the proxy; a Linux timer can’t serve as the proxy for a
PAPI derived event.

For example, on newer Intel CPUs, often PAPI floating point events are all derived and
cannot be sampled directly. In that case, you could count FLOPs by using cycles a proxy
event with a command line such as the following. The period for derived events is ignored
and may be omitted.

hpcrun -e PAPI_TOT_CYC@6000000 -e PAPI_FP_OPS app arg ...

Attribution of proxy samples is not as accurate as regular samples. The problem, of
course, is that the event that triggered the sample may not be related to the derived counter.
The total count of events should be accurate, but their location at the leaves in the Calling
Context tree may not be very accurate. However, the higher up the CCT, the more accurate
the attribution becomes. For example, suppose you profile a loop of mixed integer and
floating point operations and sample on PAPI_TOT_CYC directly and count PAPI_FP_OPS via
proxy sampling. The attribution of flops to individual statements within the loop is likely
to be off. But as long as the loop is long enough, the count for the loop as a whole (and up
the tree) should be accurate.

5.3.3 REALTIME and CPUTIME

HPCToolkit supports two timer-based sample sources: CPUTIME and REALTIME. The
unit for periods of these timers is microseconds.

Before describing this capability further, it is worth noting that the CYCLES event
supported by Linux perf events or PAPI’s PAPI_TOT_CYC are generally superior to any of
the timer-based sampling sources.

38

The CPUTIME and REALTIME sample sources are based on the POSIX timers
CLOCK_THREAD_CPUTIME_ID and CLOCK_REALTIME with the Linux SIGEV_THREAD_ID exten-
sion. CPUTIME only counts time when the CPU is running; REALTIME counts real (wall
clock) time, whether the process is running or not. Signal delivery for these timers is
thread-specific, so these timers are suitable for profiling multithreaded programs. Sam-
pling using the REALTIME sample source may break some applications that don’t handle
interrupted syscalls well. In that case, consider using CPUTIME instead.

The following example, which specifies a period of 5000 microseconds will sample each
thread in app at a rate of approximately 200 times per second.

hpcrun -e REALTIME@5000 app arg ...

Note: do not use more than one timer-based sample source to monitor a program execution.
When using a sample source such as CPUTIME or REALTIME, we recommend not using another
time-based sampling source such as Linux perf events CYCLES or PAPI’s PAPI_TOT_CYC.
Technically, this is feasible and hpcrun won’t die. However, multiple time-based sample
sources would compete with one another to measure the execution and likely lead to dropped
samples and possibly distorted results.

5.3.4 IO

The IO sample source counts the number of bytes read and written. This displays two
metrics in the viewer: “IO Bytes Read” and “IO Bytes Written.” The IO source is a
synchronous sample source. It overrides the functions read, write, fread and fwrite and
records the number of bytes read or written along with their dynamic context synchronously
rather than relying on data collection triggered by interrupts.

To include this source, use the IO event (no period). In the static case, two steps are
needed. Use the --io option for hpclink to link in the IO library and use the IO event to
activate the IO source at runtime. For example,

(dynamic) hpcrun -e IO app arg ...

(static) hpclink --io gcc -g -O -static -o app file.c ...

export HPCRUN_EVENT_LIST=IO

app arg ...

The IO source is mainly used to find where your program reads or writes large amounts
of data. However, it is also useful for tracing a program that spends much time in read and
write. The hardware performance counters do not advance while running in the kernel, so
the trace viewer may misrepresent the amount of time spent in syscalls such as read and
write. By adding the IO source, hpcrun overrides read and write and thus is able to more
accurately count the time spent in these functions.

5.3.5 MEMLEAK

The MEMLEAK sample source counts the number of bytes allocated and freed. Like IO,
MEMLEAK is a synchronous sample source and does not generate asynchronous interrupts.
Instead, it overrides the malloc family of functions (malloc, calloc, realloc and free

39

plus memalign, posix_memalign and valloc) and records the number of bytes allocated
and freed along with their dynamic context.

MEMLEAK allows you to find locations in your program that allocate memory that is
never freed. But note that failure to free a memory location does not necessarily imply
that location has leaked (missing a pointer to the memory). It is common for programs to
allocate memory that is used throughout the lifetime of the process and not explicitly free
it.

To include this source, use the MEMLEAK event (no period). Again, two steps are needed
in the static case. Use the --memleak option for hpclink to link in the MEMLEAK library
and use the MEMLEAK event to activate it at runtime. For example,

(dynamic) hpcrun -e MEMLEAK app arg ...

(static) hpclink --memleak gcc -g -O -static -o app file.c ...

export HPCRUN_EVENT_LIST=MEMLEAK

app arg ...

If a program allocates and frees many small regions, the MEMLEAK source may result in a
high overhead. In this case, you may reduce the overhead by using the memleak probability
option to record only a fraction of the mallocs. For example, to monitor 10% of the mallocs,
use:

(dynamic) hpcrun -e MEMLEAK --memleak-prob 0.10 app arg ...

(static) export HPCRUN_EVENT_LIST=MEMLEAK

export HPCRUN_MEMLEAK_PROB=0.10

app arg ...

It might appear that if you monitor only 10% of the program’s mallocs, then you would
have only a 10% chance of finding the leak. But if a program leaks memory, then it’s likely
that it does so many times, all from the same source location. And you only have to find
that location once. So, this option can be a useful tool if the overhead of recording all
mallocs is prohibitive.

Rarely, for some programs with complicated memory usage patterns, the MEMLEAK source
can interfere with the application’s memory allocation causing the program to segfault. If
this happens, use the hpcrun debug (dd) variable MEMLEAK_NO_HEADER as a workaround.

(dynamic) hpcrun -e MEMLEAK -dd MEMLEAK_NO_HEADER app arg ...

(static) export HPCRUN_EVENT_LIST=MEMLEAK

export HPCRUN_DEBUG_FLAGS=MEMLEAK_NO_HEADER

app arg ...

The MEMLEAK source works by attaching a header or a footer to the application’s malloc’d
regions. Headers are faster but have a greater potential for interfering with an application.
Footers have higher overhead (require an external lookup) but have almost no chance of
interfering with an application. The MEMLEAK_NO_HEADER variable disables headers and uses
only footers.

40

5.4 Experimental Python Support

This section provides a brief overview of how to use HPCToolkit to analyze the
performance of Python-based applications. Normally, hpcrun will attribute performance to
the CPython implementation, not to the application Python code, as shown in Figure 5.1.
This usually is of little interest to an application developer, so HPCToolkit provides
experimental support for attributing to Python callstacks.

NOTE: Python support in HPCToolkit is in early days. If you compile
HPCToolkit to match the version of Python being used by your application, in
many cases you will find that you can measure what you want. However, other
cases may not work as expected; crashes and corrupted performance data are
not uncommon. For the aforementioned reasons, use at your own risk.

Figure 5.1: Example of a simple Python application measured without (left) and with
(right) Python support enabled via hpcrun -a python. The left database has no source
code, since sources were not provided for the CPython implementation.

If HPCToolkit has been compiled with Python support enabled, hpcrun is able to
replace segments of the C callstacks with the Python code running in those frames. To
enable this transformation, profile your application the additional -a python flag:

(dynamic) hpcrun -a python -e event@howoften python3 app arg ...

41

As shown in Figure 5.1, passing this flag removes the CPython implementation details,
replacing it with the much smaller Python callstack. When Python calls an external C
library, HPCToolkit will report both the name of the Python function object and the C
function being called, in this example sleep and Glibc’s clock nanosleep respectively.

5.4.1 Known Limitations

This section lists a number of known limitations with the current implementation of
the Python support. It is recommended that users are aware of these limitations before
attempting to use the Python support in practice.

1. Pythons older than 3.8 are not supported by HPCToolkit. Please upgrade any ap-
plications and Python extensions to use a recent version of Python before attempting
to enable Python support.

2. The application should be run with the same Python that was used to compile HPC-
Toolkit. The CPython ABI can change between patch versions and due to certain
build configuration flags. To ensure hpcrun will not unwittingly crash the application,
it is best to use a single Python for both HPCToolkit and the application.

Despite this recommendation, it is worth noting that we have had some minor suc-
cess with cross-version compatability (e.g. building HPCToolkit with Python 3.11.8
support and using it to measure a program running under Python 3.11.6) However,
you should be surprised if cross-version compatibility works rather than expecting it
to work, even across patch releases.

3. The bottom-up and flat views of hpcviewer may not correctly present Python call-
stacks, particularly those that call C/C++ extensions. Some Python functions may
be missing, and the metrics attributed to them may be suspect. In these cases, refer
to the top-down view as the known-good source of truth.

4. Threads spawned by Python’s threading and subprocess modules are not fully sup-
ported. Only the main Python thread will attribute performance to Python callstacks,
all others will attribute performance to the CPython implementation. If Python
threading is a performance bottleneck, consider implementing the parallelism in a
C/C++ extension instead of in Python to avoid contention on the GIL.

5. Applications using signals and signal handlers, for example Python’s signal module,
will experience crashes when run under hpcrun. The current implementation fails to
process the non-sequential modifications to the Python stack that take place when
Python handles signals.

5.5 Process Fraction

Although hpcrun can profile parallel jobs with thousands or tens of thousands of pro-
cesses, there are two scaling problems that become prohibitive beyond a few thousand cores.
First, hpcrun writes the measurement data for all of the processes into a single directory.

42

https://docs.python.org/3/glossary.html#term-global-interpreter-lock

This results in one file per process plus one file per thread (two files per thread if using trac-
ing). Unix file systems are not equipped to handle directories with many tens or hundreds
of thousands of files. Second, the sheer volume of data can overwhelm the viewer when the
size of the database far exceeds the amount of memory on the machine.

The solution is to sample only a fraction of the processes. That is, you can run an
application on many thousands of cores but record data for only a few hundred processes.
The other processes run the application but do not record any measurement data. This
is what the process fraction option (-f or --process-fraction) does. For example, to
monitor 10% of the processes, use:

(dynamic) hpcrun -f 0.10 -e event@howoften app arg ...

(dynamic) hpcrun -f 1/10 -e event@howoften app arg ...

(static) export HPCRUN_EVENT_LIST=’event@howoften’

export HPCRUN_PROCESS_FRACTION=0.10

app arg ...

With this option, each process generates a random number and records its measurement
data with the given probability. The process fraction (probability) may be written as a
decimal number (0.10) or as a fraction (1/10) between 0 and 1. So, in the above example,
all three cases would record data for approximately 10% of the processes. Aim for a number
of processes in the hundreds.

5.6 Starting and Stopping Sampling

HPCToolkit supports an API for the application to start and stop sampling. This
is useful if you want to profile only a subset of a program and ignore the rest. The API
supports the following functions.

void hpctoolkit_sampling_start(void);

void hpctoolkit_sampling_stop(void);

For example, suppose that your program has three major phases: it reads input from
a file, performs some numerical computation on the data and then writes the output to
another file. And suppose that you want to profile only the compute phase and skip the
read and write phases. In that case, you could stop sampling at the beginning of the
program, restart it before the compute phase and stop it again at the end of the compute
phase.

This interface is process wide, not thread specific. That is, it affects all threads of a
process. Note that when you turn sampling on or off, you should do so uniformly across all
processes, normally at the same point in the program. Enabling sampling in only a subset
of the processes would likely produce skewed and misleading results.

And for technical reasons, when sampling is turned off in a threaded process, interrupts
are disabled only for the current thread. Other threads continue to receive interrupts, but
they don’t unwind the call stack or record samples. So, another use for this interface is
to protect syscalls that are sensitive to being interrupted with signals. For example, some
Gemini interconnect (GNI) functions called from inside gasnet_init() or MPI_Init() on

43

Cray XE systems will fail if they are interrupted by a signal. As a workaround, you could
turn sampling off around those functions.

Also, you should use this interface only at the top level for major phases of your program.
That is, the granularity of turning sampling on and off should be much larger than the time
between samples. Turning sampling on and off down inside an inner loop will likely produce
skewed and misleading results.

To use this interface, put the above function calls into your program where you want
sampling to start and stop. Remember, starting and stopping apply process wide. For
C/C++, include the following header file from the HPCToolkit include directory.

#include <hpctoolkit.h>

Compile your application with libhpctoolkit with -I and -L options for the include
and library paths. For example,

gcc -I /path/to/hpctoolkit/include app.c ... \

-L /path/to/hpctoolkit/lib/hpctoolkit -lhpctoolkit ...

The libhpctoolkit library provides weak symbol no-op definitions for the start and
stop functions. For dynamically linked programs, be sure to include -lhpctoolkit on the
link line (otherwise your program won’t link). For statically linked programs, hpclink
adds strong symbol definitions for these functions. So, -lhpctoolkit is not necessary in
the static case, but it doesn’t hurt.

To run the program, set the LD_LIBRARY_PATH environment variable to include the
HPCToolkit lib/hpctoolkit directory. This step is only needed for dynamically linked
programs.

export LD_LIBRARY_PATH=/path/to/hpctoolkit/lib/hpctoolkit

Note that sampling is initially turned on until the program turns it off. If you want it
initially turned off, then use the -ds (or --delay-sampling) option for hpcrun (dynamic)
or set the HPCRUN_DELAY_SAMPLING environment variable (static).

(dynamic) hpcrun -ds -e event@howoften app arg ...

(static) export HPCRUN_EVENT_LIST=’event@howoften’

export HPCRUN_DELAY_SAMPLING=1

app arg ...

5.7 Environment Variables for hpcrun

For most systems, hpcrun requires no special environment variable settings. There are
two situations, however, where hpcrun, to function correctly, must refer to environment
variables. These environment variables, and corresponding situations are:

HPCTOOLKIT To function correctly, hpcrun must know the location of the HPCToolkit
top-level installation directory. The hpcrun script uses elements of the installation
lib and libexec subdirectories. On most systems, the hpcrun can find the requisite

44

#!/bin/sh

#PBS -l mppwidth=#nodes

#PBS -l walltime=00:30:00

#PBS -V

export HPCTOOLKIT=/path/to/hpctoolkit/install/directory

export CRAY_ROOTFS=DSL

cd $PBS_O_WORKDIR

aprun -n #nodes hpcrun -e event@howoften dynamic-app arg ...

Figure 5.2: A sketch of how to help HPCToolkit find its dynamic libraries when using
Cray’s ALPS job launcher.

components relative to its own location in the file system. However, some parallel job
launchers copy the hpcrun script to a different location as they launch a job. If your
system does this, you must set the HPCTOOLKIT environment variable to the location
of the HPCToolkit top-level installation directory before launching a job.

Note to system administrators: if your system provides a module system for con-
figuring software packages, then constructing a module for HPCToolkit to initialize these
environment variables to appropriate settings would be convenient for users.

5.8 Cray System Specific Notes

If you are trying to profile a dynamically-linked executable on a Cray that is still using
the ALPS job launcher and you see an error like the following

/var/spool/alps/103526/hpcrun: Unable to find HPCTOOLKIT root directory.

Please set HPCTOOLKIT to the install prefix, either in this script,

or in your environment, and try again.

in your job’s error log then read on. Otherwise, skip this section.
The problem is that the Cray job launcher copies HPCToolkit’s hpcrun script to a

directory somewhere below /var/spool/alps/ and runs it from there. By moving hpcrun

to a different directory, this breaks hpcrun’s method for finding HPCToolkit’s install
directory.

To fix this problem, in your job script, set HPCTOOLKIT to the top-level HPCToolkit
installation directory (the directory containing the bin, lib and libexec subdirectories)
and export it to the environment. (If launching statically-linked binaries created using
hpclink, this step is unnecessary, but harmless.) Figure 5.2 show a skeletal job script
that sets the HPCTOOLKIT environment variable before monitoring a dynamically-linked
executable with hpcrun:

Your system may have a module installed for hpctoolkit with the correct settings for
PATH, HPCTOOLKIT, etc. In that case, the easiest solution is to load the hpctoolkit module.
Try “module show hpctoolkit” to see if it sets HPCTOOLKIT.

45

46

Chapter 6

Monitoring Statically Linked
Applications with hpclink

On modern Linux systems, dynamically linked executables are the default. With dynam-
ically linked executables, HPCToolkit’s hpcrun script uses library preloading to inject
HPCToolkit’s monitoring code into an application’s address space. However, in some
cases, statically-linked executables are necessary or desirable.

• One might prefer a statically linked executable because they are generally faster if the
executable spends a significant amount of time calling functions in libraries.

• On Cray supercomputers, statically-linked executables are often the default.

For statically linked executables, preloading HPCToolkit’s monitoring code into an
application’s address space at program launch is not an option. Instead, monitoring code
must be added at link time; HPCToolkit’s hpclink script is used for this purpose.

6.1 Linking with hpclink

Adding HPCToolkit’s monitoring code into a statically linked application is easy.
This does not require any source-code modifications, but it does involve a small change to
your build procedure. You continue to compile all of your object (.o) files exactly as before,
but you will need to modify your final link step to use hpclink to add HPCToolkit’s
monitoring code to your executable.

In your build scripts, locate the last step in the build, namely, the command that
produces the final statically linked binary. Edit that command line to add the hpclink

command at the front.
For example, suppose that the name of your application binary is app and the last step

in your Makefile links various object files and libraries as follows into a statically linked
executable:

mpicc -o app -static file.o ... -l<lib> ...

To build a version of your executable with HPCToolkit’s monitoring code linked in, you
would use the following command line:

47

hpclink mpicc -o app -static file.o ... -l<lib> ...

In practice, you may want to edit your Makefile to always build two versions of your
program, perhaps naming them app and app.hpc.

6.1.1 Using hpclink when gprof instrumentation is present

When an application has been compiled with the compiler flag -pg, the compiler adds
instrumentation to collect performance measurement data for the gprof profiler. Measuring
application performance with HPCToolkit’s measurement subsystem and gprof instru-
mentation active in the same execution may cause the execution to abort. One can detect
the presence of gprof instrumentation in an application by the presence of __monstartup
and _mcleanup symbols in a executable. One can disable gprof instrumentation when
measuring the performance of a statically-linked application by using the --disable-gprof
argument to hpclink.

6.2 Running a Statically Linked Binary

For dynamically linked executables, the hpcrun script sets environment variables to
pass information to the HPCToolkit monitoring library. On standard Linux systems,
statically linked hpclink-ed executables can still be launched with hpcrun.

You many encounter a situation where the hpcrun script cannot be used with an appli-
cation launcher. In such cases, you will need to use the HPCRUN_EVENT_LIST environment
variable to pass a list of events to HPCToolkit’s monitoring code, which was linked
into your executable using hpclink. Typically, you would set HPCRUN_EVENT_LIST in your
launch script.

The HPCRUN_EVENT_LIST environment variable should be set to a space-separated list
of EVENT@COUNT pairs. For example, in a PBS script for a Cray system, you might write
the following in Bourne shell or bash syntax:

#!/bin/sh

#PBS -l size=64

#PBS -l walltime=01:00:00

cd $PBS_O_WORKDIR

export HPCRUN_EVENT_LIST="CYCLES@f200 PERF_COUNT_HW_CACHE_MISSES@f200"

aprun -n 64 ./app arg ...

To collect sample traces of an execution of a statically linked binary (for visualization
with Trace view), one needs to set the environment variable HPCRUN_TRACE=1 in the execu-
tion environment.

6.3 Troubleshooting

With some compilers you need to disable interprocedural optimization to use hpclink.
To instrument your statically linked executable at link time, hpclink uses the ld option
--wrap (see the ld(1) man page) to interpose monitoring code between your application

48

and various process, thread, and signal control operations, e.g., fork, pthread_create, and
sigprocmask to name a few. For some compilers, e.g., IBM’s XL compilers, interprocedural
optimization interferes with the --wrap option and prevents hpclink from working properly.
If this is the case, hpclink will emit error messages and fail. If you want to use hpclink

with such compilers, sadly, you must turn off interprocedural optimization.
Note that interprocedural optimization may not be explicitly enabled during your com-

piles; it might be implicitly enabled when using a compiler optimization option such as
-fast. In cases such as this, you can often specify -fast along with an option such as
-no-ipa; this option combination will provide the benefit of all of -fast’s optimizations
except interprocedural optimization.

49

50

Chapter 7

Monitoring MPI Applications

HPCToolkit’s measurement subsystem can measure each process and thread in an
execution of an MPI program. HPCToolkit can be used with pure MPI programs as
well as hybrid programs that use multithreading, e.g. OpenMP or Pthreads, within MPI
processes.

HPCToolkit supports C, C++ and Fortran MPI programs. It has been successfully
tested with MPICH, MVAPICH and OpenMPI and should work with almost all MPI im-
plementations.

7.1 Running and Analyzing MPI Programs

Q: How do I launch an MPI program with hpcrun?

A: For a dynamically linked application binary app, use a command line similar to the
following example:

<mpi-launcher> hpcrun -e <event>:<period> ... app [app-arguments]

Observe that the MPI launcher (mpirun, mpiexec, etc.) is used to launch hpcrun, which is
then used to launch the application program.

Q: How do I compile and run a statically linked MPI program?

A: To use HPCToolkit to monitor statically linked binaries, use hpclink to build a stat-
ically linked version of your application that includes HPCToolkit’s monitoring library.
For example, to link your application binary app:

hpclink <linker> -o app <linker-arguments>

Then, set the HPCRUN_EVENT_LIST environment variable in the launch script before running
the application:

export HPCRUN_EVENT_LIST="CYCLES@f200"

<mpi-launcher> app [app-arguments]

See the Chapter 6 for more information.

Q: What files does hpcrun produce for an MPI program?

51

A: In this example, s3d_f90.x is the Fortran S3D program compiled with OpenMPI and
run with the command line

mpiexec -n 4 hpcrun -e PAPI_TOT_CYC:2500000 ./s3d_f90.x

This produced 12 files in the following abbreviated ls listing:

krentel 1889240 Feb 18 s3d_f90.x-000000-000-72815673-21063.hpcrun

krentel 9848 Feb 18 s3d_f90.x-000000-001-72815673-21063.hpcrun

krentel 1914680 Feb 18 s3d_f90.x-000001-000-72815673-21064.hpcrun

krentel 9848 Feb 18 s3d_f90.x-000001-001-72815673-21064.hpcrun

krentel 1908030 Feb 18 s3d_f90.x-000002-000-72815673-21065.hpcrun

krentel 7974 Feb 18 s3d_f90.x-000002-001-72815673-21065.hpcrun

krentel 1912220 Feb 18 s3d_f90.x-000003-000-72815673-21066.hpcrun

krentel 9848 Feb 18 s3d_f90.x-000003-001-72815673-21066.hpcrun

krentel 147635 Feb 18 s3d_f90.x-72815673-21063.log

krentel 142777 Feb 18 s3d_f90.x-72815673-21064.log

krentel 161266 Feb 18 s3d_f90.x-72815673-21065.log

krentel 143335 Feb 18 s3d_f90.x-72815673-21066.log

Here, there are four processes and two threads per process. Looking at the file names,
s3d_f90.x is the name of the program binary, 000000-000 through 000003-001 are the
MPI rank and thread numbers, and 21063 through 21066 are the process IDs.

We see from the file sizes that OpenMPI is spawning one helper thread per process.
Technically, the smaller .hpcrun files imply only a smaller calling-context tree (CCT), not
necessarily fewer samples. But in this case, the helper threads are not doing much work.

Q: Do I need to include anything special in the source code?

A: Just one thing. Early in the program, preferably right after MPI_Init(), the program
should call MPI_Comm_rank() with communicator MPI_COMM_WORLD. Nearly all MPI pro-
grams already do this, so this is rarely a problem. For example, in C, the program might
begin with:

int main(int argc, char **argv)

{

int size, rank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

}

Note: The first call to MPI_Comm_rank() should use MPI_COMM_WORLD. This sets the
process’s MPI rank in the eyes of hpcrun. Other communicators are allowed, but the first
call should use MPI_COMM_WORLD.

Also, the call to MPI_Comm_rank() should be unconditional, that is all processes should
make this call. Actually, the call to MPI_Comm_size() is not necessary (for hpcrun), al-
though most MPI programs normally call both MPI_Comm_size() and MPI_Comm_rank().

52

Q: What MPI implementations are supported?

A: Although the matrix of all possible MPI variants, versions, compilers, architectures and
systems is very large, HPCToolkit has been tested successfully with MPICH, MVAPICH
and OpenMPI and should work with most MPI implementations.

Q: What languages are supported?

A: C, C++ and Fortran are supported.

7.2 Building and Installing HPCToolkit

Q: Do I need to compile HPCToolkit with any special options for MPI support?

A: No, HPCToolkit is designed to work with multiple MPI implementations at the same
time. That is, you don’t need to provide an mpi.h include path, and you don’t need to
compile multiple versions of HPCToolkit, one for each MPI implementation.

The technically-minded reader will note that each MPI implementation uses a differ-
ent value for MPI_COMM_WORLD and may wonder how this is possible. hpcrun (actually
libmonitor) waits for the application to call MPI_Comm_rank() and uses the same com-
municator value that the application uses. This is why we need the application to call
MPI_Comm_rank() with communicator MPI_COMM_WORLD.

53

54

Chapter 8

Measurement and Analysis of
GPU-accelerated Applications

HPCToolkit can measure both the CPU and GPU performance of GPU-accelerated
applications. It can measure CPU performance using asynchronous sampling triggered by
Linux timers or hardware counter events as described in Section 5.3 and it can monitor
GPU performance using tool support libraries provided by GPU vendors.

In the following sections, we describe a generic substrate in HPCToolkit to interact with
vendor specific runtime systems and libraries and the vendor specific details for measuring
performance for NVIDIA, AMD, and Intel GPUs.

While a single version of HPCToolkit can be built that supports GPUs from multiple
vendors and programming models, using HPCToolkit to collect GPU metrics using GPUs
from multiple vendors in a single execution or using multiple GPU programming models
(e.g. CUDA + OpenCL) in a single execution is unsupported. It is unlikely to produce
correct measurements and likely to crash.

8.1 GPU Performance Measurement Substrate

HPCToolkit’s measurement subsystem supports both profiling and tracing of GPU ac-
tivities. We discuss the support for profiling and tracing in the following subsections.

8.1.1 Profiling GPU Activities

The foundation of HPCToolkit’s support for measuring the performance of GPU-
accelerated applications is a vendor-independent monitoring substrate. A thin software
layer connects NVIDIA’s CUPTI (CUDA Performance Tools Interface) [13] and AMD’s
ROC-tracer (ROCm Tracer Callback/Activity Library) [3] monitoring libraries to this sub-
strate. The substrate also includes function wrappers to intercept calls to the OpenCL API
and Intel’s Level 0 API to measure GPU performance for programming models that do not
have an integrated measurement substrate such as CUPTI or ROC-tracer. HPCToolkit re-
ports GPU performance metrics in a vendor-neutral way. For instance, rather than focusing
on NVIDIA warps or AMD wavefronts, HPCToolkit presents both as fine-grain, thread-level
parallelism.

55

Metric Description

GKER (sec) GPU time: kernel execution (seconds)

GMEM (sec) GPU time: memory allocation/deallocation (seconds)

GMSET (sec) GPU time: memory set (seconds)

GXCOPY (sec) GPU time: explicit data copy (seconds)

GSYNC (sec) GPU time: synchronization (seconds)

GPUOP (sec) Total GPU operation time: sum of all metrics above

Table 8.1: GPU operation timings.

HPCToolkit supports two levels of performance monitoring for GPU accelerated appli-
cations: coarse-grain profiling and tracing of GPU activities at the operation level (e.g.,
kernel launches, data allocations, memory copies, ...), and fine-grain measurement of GPU
computations using PC sampling or instrumentation, which measure GPU computations at
the granularity of individual machine instructions.

Coarse-grain profiling attributes to each calling context the total time of all GPU oper-
ations initiated in that context. Table 8.1 shows the classes of GPU operations for which
timings are collected. In addition, HPCToolkit records metrics for operations performed
including memory allocation and deallocation (Table 8.2), memory set (Table 8.3), explicit
memory copies (Table 8.4), and synchronization (Table 8.5). These operation metrics are
available for GPUs from all three vendors. For NVIDIA GPUs, HPCToolkit also reports
GPU kernel characteristics, including including register usage, thread count per block, and
theoretical occupancy as shown in Table 8.6. HPCToolkit derives a theoretical GPU oc-
cupancy metric as the ratio of the active threads in a streaming multiprocessor to the
maximum active threads supported by the hardware in one streaming multiprocessor.

Table 8.7 shows fine-grain metrics for GPU instruction execution. When possible, HPC-
Toolkit attributes fine-grain GPU metrics to both GPU calling contexts and CPU calling
contexts. To our knowledge, no GPU has hardware support for attributing metrics directly
to GPU calling contexts. To compensate, HPCToolkit approximates attributes metrics to
GPU calling contexts. It reconstructs GPU calling contexts from static GPU call graphs for
NVIDIA GPUs (See Section 8.2.4) and uses measurements of call sites and data flow anal-
ysis on static call graphs to apportion metrics among call paths in a GPU calling context
tree. We expect to add similar functionality for GPUs from other vendors in the future.

The performance metrics above are reported in a vendor-neutral way. Not every metric
is available for all GPUs. Coarse-grain profiling and tracing are supported for AMD, Intel,
and NVIDIA GPUs. HPCToolkit supports fine-grain measurements on NVIDIA GPUs
using PC sampling and provides some simple fine-grain measurements on Intel GPUs using
instrumentation. Currently, AMD GPUs lack both hardware and software support for fine-
grain measurement. The next few sections describe specific measurement capabilities for
NVIDIA, AMD, and Intel GPUs, respectively.

56

Metric Description

GMEM:UNK (B) GPU memory alloc/free: unknown memory kind (bytes)

GMEM:PAG (B) GPU memory alloc/free: pageable memory (bytes)

GMEM:PIN (B) GPU memory alloc/free: pinned memory (bytes)

GMEM:DEV (B) GPU memory alloc/free: device memory (bytes)

GMEM:ARY (B) GPU memory alloc/free: array memory (bytes)

GMEM:MAN (B) GPU memory alloc/free: managed memory (bytes)

GMEM:DST (B) GPU memory alloc/free: device static memory (bytes)

GMEM:MST (B) GPU memory alloc/free: managed static memory (bytes)

GMEM:COUNT GPU memory alloc/free: count

Table 8.2: GPU memory allocation and deallocation.

Metric Description

GMSET:UNK (B) GPU memory set: unknown memory kind (bytes)

GMSET:PAG (B) GPU memory set: pageable memory (bytes)

GMSET:PIN (B) GPU memory set: pinned memory (bytes)

GMSET:DEV (B) GPU memory set: device memory (bytes)

GMSET:ARY (B) GPU memory set: array memory (bytes)

GMSET:MAN (B) GPU memory set: managed memory (bytes)

GMSET:DST (B) GPU memory set: device static memory (bytes)

GMSET:MST (B) GPU memory set: managed static memory (bytes)

GMSET:COUNT GPU memory set: count

Table 8.3: GPU memory set metrics.

8.1.2 Tracing GPU Activities

HPCToolkit also supports tracing of activities on GPU streams on NVIDIA, AMD, and
Intel GPUs.1 Tracing of GPU activities will be enabled any time GPU monitoring is enabled
and hpcrun’s tracing is enabled with -t or --trace.

It is important to know that hpcrun creates CPU tracing threads to record a trace of
GPU activities. By default, it creates one tracing thread per four GPU streams. To adjust
the number of GPU streams per tracing thread, see the settings for HPCRUN CONTROL KNOBS

in Appendix A. When mapping a GPU-accelerated node program onto a node, you may need
to consider provisioning additional hardware threads or cores to accommodate these tracing
threads; otherwise, they may compete against application threads for CPU resources, which
may degrade the performance of your execution.

1Tacing of GPU activities on Intel GPUs is currently supported only for Intel’s OpenCL runtime. We
plan to add tracing support for Intel’s Level 0 runtime in a future release.

57

Metric Description

GXCOPY:UNK (B) GPU explicit memory copy: unknown kind (bytes)

GXCOPY:H2D (B) GPU explicit memory copy: host to device (bytes)

GXCOPY:D2H (B) GPU explicit memory copy: device to host (bytes)

GXCOPY:H2A (B) GPU explicit memory copy: host to array (bytes)

GXCOPY:A2H (B) GPU explicit memory copy: array to host (bytes)

GXCOPY:A2A (B) GPU explicit memory copy: array to array (bytes)

GXCOPY:A2D (B) GPU explicit memory copy: array to device (bytes)

GXCOPY:D2A (B) GPU explicit memory copy: device to array (bytes)

GXCOPY:D2D (B) GPU explicit memory copy: device to device (bytes)

GXCOPY:H2H (B) GPU explicit memory copy: host to host (bytes)

GXCOPY:P2P (B) GPU explicit memory copy: peer to peer (bytes)

GXCOPY:COUNT GPU explicit memory copy: count

Table 8.4: GPU explicit memory copy metrics.

Metric Description

GSYNC:UNK (sec) GPU synchronizations: unknown kind

GSYNC:EVT (sec) GPU synchronizations: event

GSYNC:STRE (sec) GPU synchronizations: stream event wait

GSYNC:STR (sec) GPU synchronizations: stream

GSYNC:CTX (sec) GPU synchronizations: context

GSYNC:COUNT GPU synchronizations: count

Table 8.5: GPU synchronization metrics.

8.2 NVIDIA GPUs

HPCToolkit supports performance measurement of programs using either OpenCL or
CUDA on NVIDIA GPUs. In the next section, we describe support for measuring CUDA
applications using NVIDIA’s CUPTI API. Support for measuring the performance of GPU-
accelerated OpenCL programs is common across all platforms; for that reason, we describe
it separately in Section 8.5.

8.2.1 Performance Measurement of CUDA Programs

When using NVIDIA’s CUDA programming model, HPCToolkit supports two levels
of performance monitoring for NVIDIA GPUs: coarse-grain profiling and tracing of GPU
activities at the operation level, and fine-grain profiling of GPU computations using PC
sampling, which measures GPU computations at a granularity of individual machine in-
structions. Section 8.2.2 describes fine-grain GPU performance measurement using PC
sampling and the metrics it measures or computes.

While performing coarse-grain GPU monitoring of kernels launches, memory copies,
and other GPU activities as a CUDA program executes, HPCToolkit will collect a trace of
activity for each GPU stream if tracing is enabled. Table 8.8 shows the possible command-

58

Metric Description

GKER:STMEM (B) GPU kernel: static memory (bytes)

GKER:DYMEM (B) GPU kernel: dynamic memory (bytes)

GKER:LMEM (B) GPU kernel: local memory (bytes)

GKER:FGP ACT GPU kernel: fine-grain parallelism, actual

GKER:FGP MAX GPU kernel: fine-grain parallelism, maximum

GKER:THR REG GPU kernel: thread register count

GKER:BLK THR GPU kernel: thread count

GKER:BLK GPU kernel: block count

GKER:BLK SM (B) GPU kernel: block local memory (bytes)

GKER:COUNT GPU kernel: launch count

GKER:OCC THR GPU kernel: theoretical occupancy

Table 8.6: GPU kernel characteristic metrics.

line arguments to hpcrun that will enable different levels of monitoring for NVIDIA GPUs
for GPU-accelerated code implemented using CUDA. When fine-grain monitoring using PC
sampling is enabled, coarse-grain profiling is also performed, so tracing is available in this
mode as well. However, since PC sampling dilates the CPU overhead of GPU-accelerated
codes, tracing is not recommended when PC sampling is enabled.

Besides the standard metrics for GPU operation timings (Table 8.1), memory allocation
and deallocation (Table 8.2), memory set (Table 8.3), explicit memory copies (Table 8.4),
and synchronization (Table 8.5), HPCToolkit reports GPU kernel characteristics, including
including register usage, thread count per block, and theoretical occupancy as shown in
Table 8.6. NVIDIA defines theoretical occupancy as the ratio of the active threads in a
streaming multiprocessor to the maximum active threads supported by the hardware in one
streaming multiprocessor.

At present, using NVIDIA’s CUPTI library adds substantial measurement overhead.
Unlike CPU monitoring based on asynchronous sampling, GPU performance monitoring
uses vendor-provided callback interfaces to intercept the initiation of each GPU operation.
Accordingly, the overhead of GPU performance monitoring depends upon how frequently
GPU operations are initiated. In our experience to date, profiling (and if requested, tracing)
on NVIDIA GPUs using NVIDIA’s CUPTI interface roughly doubles the execution time of
a GPU-accelerated application. In our experience, we have seen NVIDIA’s PC sampling
dilate the execution time of a GPU-accelerated program by 30× using CUDA 10 or earlier.
Our early experience with CUDA 11 indicates that overhead using PC sampling is much
lower and less than 5×. The overhead of GPU monitoring is principally on the host side.
As measured by CUPTI, the time spent in GPU operations or PC samples is expected to
be relatively accurate. However, since execution as a whole is slowed while measuring GPU
performance, when evaluating GPU activity reported by HPCToolkit, one must be careful.

For instance, if a GPU-accelerated program runs in 1000 seconds without HPCToolkit
monitoring GPU activity but slows to 2000 seconds when GPU profiling and tracing is en-
abled, then if GPU profiles and traces show that the GPU is active for 25% of the execution
time, one should re-scale the accurate measurements of GPU activity by considering the 2×
dilation when monitoring GPU activity. Without monitoring, one would expect the same

59

Metric Description

GINST GPU instructions executed

GINST:STL ANY GPU instruction stalls: any

GINST:STL NONE GPU instruction stalls: no stall

GINST:STL IFET GPU instruction stalls: await availability of next in-
struction (fetch or branch delay)

GINST:STL IDEP GPU instruction stalls: await satisfaction of instruc-
tion input dependence

GINST:STL GMEM GPU instruction stalls: await completion of global
memory access

GINST:STL TMEM GPU instruction stalls: texture memory request
queue full

GINST:STL SYNC GPU instruction stalls: await completion of thread or
memory synchronization

GINST:STL CMEM GPU instruction stalls: await completion of constant
or immediate memory access

GINST:STL PIPE GPU instruction stalls: await completion of required
compute resources

GINST:STL MTHR GPU instruction stalls: global memory request queue
full

GINST:STL NSEL GPU instruction stalls: not selected for issue but
ready

GINST:STL OTHR GPU instruction stalls: other

GINST:STL SLP GPU instruction stalls: sleep

Table 8.7: GPU instruction execution and stall metrics.

Argument to hpcrun What is monitored

-e gpu=nvidia coarse-grain profiling of GPU operations

-e gpu=nvidia -t coarse-grain profiling and tracing of GPU operations

-e gpu=nvidia,pc coarse-grain profiling of GPU operations; fine-grain
profiling og GPU kernels using PC sampling

Table 8.8: Monitoring performance on NVIDIA GPUs when using NVIDIA’s CUDA
programming model and runtime.

level of GPU activity, but the host time would be twice as fast. Thus, without monitoring,
the ratio of GPU activity to host activity would be roughly double.

8.2.2 PC Sampling on NVIDIA GPUs

NVIDIA’s GPUs have supported PC sampling since Maxwell [6]. Instruction samples are
collected separately on each active streaming multiprocessor (SM) and merged in a buffer
returned by NVIDIA’s CUPTI. In each sampling period, one warp scheduler of each active
SM samples the next instruction from one of its active warps. Sampling rotates through an

60

8/6/2019 28

𝑆ଵ 𝑆ଶ

𝑆ଷ 𝑆ସ

𝑆ଵ 𝑆ଶ Stalled insts

Eligible insts

Issued insts

Sampled insts𝑃 2𝑃 3𝑃 4𝑃 5𝑃 6𝑃

Figure 8.1: NVIDIA’s GPU PC sampling example on an SM. P −6P represent six sample
periods P cycles apart. S1 − S4 represent four schedulers on an SM.

Metric Description

GSAMP:DRP GPU PC samples: dropped

GSAMP:EXP GPU PC samples: expected

GSAMP:TOT GPU PC samples: measured

GSAMP:PER (cyc) GPU PC samples: period (GPU cycles)

GSAMP:UTIL (%) GPU utilization computed using PC sampling

Table 8.9: GPU PC sampling statistics.

SM’s warp schedulers in a round robin fashion. When an instruction is sampled, its stall
reason (if any) is recorded. If all warps on a scheduler are stalled when a sample is taken,
the sample is marked as a latency sample, meaning no instruction will be issued by the warp
scheduler in the next cycle. Figure 8.1 shows a PC sampling example on an SM with four
schedulers. Among the six collected samples, four are latency samples, so the estimated
stall ratio is 4/6.

Figure 8.7 shows the stall metrics recorded by HPCToolkit using CUPTI’s PC sam-
pling. Figure 8.9 shows PC sampling summary statistics recorded by HPCToolkit. Of
particular note is the metric GSAMP:UTIL. HPCToolkit computes approximate GPU uti-
lization using information gathered using PC sampling. Given the average clock frequency
and the sampling rate, if all SMs are active, then HPCToolkit knows how many instruc-
tion samples would be expected (GSAMP:EXP) if the GPU was fully active for the inter-
val when it was in use. HPCToolkit approximates the percentage of GPU utilization by
comparing the measured samples with the expected samples using the following formula:
100 ∗ (GSAMP : TOT)/(GSAMP : EXP).

For CUDA 10, measurement using PC sampling with CUPTI serializes the execution of
GPU kernels. Thus, measurement of GPU kernels using PC sampling will distort the exe-
cution of a GPU-accelerated application by blocking concurrent execution of GPU kernels.
For applications that rely on concurrent kernel execution to keep the GPU busy, this will
significantly distort execution and PC sampling measurements will only reflect the GPU
activity of kernels running in isolation.

61

8.2.3 Attributing Measurements to Source Code for NVIDIA GPUs

NVIDIA’s nvcc compiler doesn’t record information about how GPU machine code
maps to CUDA source without proper compiler arguments. Using the -G compiler option
to nvcc, one may generate NVIDIA CUBINs with full DWARF information that includes
not only line maps, which map each machine instruction back to a program source line,
but also detailed information about inlined code. However, the price of turning on -G

is that optimization by nvcc will be disabled. For that reason, the performance of code
compiled -G is vastly slower. While a developer of a template-based programming model
may find this option useful to see how a program employs templates to instantiate GPU
code, measurements of code compiled with -G should be viewed with skeptical eye.

One can use nvcc’s -lineinfo option to instruct nvcc to record line map information
during compilation.2 The -lineinfo option can be used in conjunction with nvcc opti-
mization. Using -lineinfo, one can measure and interpret the performance of optimized
code. However, line map information is a poor substitute for full DWARF information.
When nvcc inlines code during optimization, the resulting line map information simply
shows that source lines that were compiled into a GPU function. A developer examining
performance measurements for a function must reason on their own about how any source
lines from outside the function got there as the result of inlining and/or macro expansion.

When HPCToolkit uses NVIDIA’s CUPTI to monitor a GPU-accelerated application,
CUPTI notifies HPCToolkit every time it loads a CUDA binary, known as a CUBIN, into a
GPU. At runtime, HPCToolkit computes a cryptographic hash of a CUBIN’s contents and
records the CUBIN into the execution’s measurement directory. For instance, if a GPU-
accelerated application loaded CUBIN into a GPU, NVIDIA’s CUPTI informed HPCToolkit
that the CUBIN was being loaded, and HPCToolkit computed its cryptographic hash as
972349aed8, then HPCToolkit would record 972349aed8.gpubin inside a gpubins subdi-
rectory of an HPCToolkit measurement directory.

To attribute GPU performance measurements back to source, HPCToolkit’s hpcstruct
supports analysis of NVIDIA CUBIN binaries. Since many CUBIN binaries may be loaded
by a GPU-accelerated application during execution, an application’s measurements direc-
tory may contain a gpubins subdirectory populated with many CUBINs.

To conveniently analyze all of the CPU and GPU binaries associated with an execution,
we have extended HPCToolkit’s hpcstruct binary analyzer so that it can be applied to
a measurement directory rather than just individual binaries. So, for a measurements
directory hpctoolkit-laghos-measurements collected during an execution of the GPU-
accelerated laghos mini-app [8], one can analyze all of CPU and GPU binaries associated
with the measured execution by using the following command:

hpcstruct hpctoolkit-laghos-measurements

When applied in this fashion, hpcstruct runs in parallel by default. It uses half of the
threads in the CPU set in which it is launched to analyze binaries in parallel. hpcstruct

analyzes large CPU or GPU binaries (100MB or more) using 16 threads. For smaller
binaries, hpcstruct analyzes multiple smaller binaries concurrently using two threads for
the analysis of each.

2Line maps relate each machine instruction back to the program source line from where it came.

62

By default, when applied to a measurements directory, hpcstruct performs only
lightweight analysis of the GPU functions in each CUBIN. When a measurements direc-
tory contains fine-grain measurements collected using PC sampling, it is useful to perform
a more detailed analysis to recover information about the loops and call sites of GPU func-
tions in an NVIDIA CUBIN. Unfortunately, NVIDIA has refused to provide an API that
would enable HPCToolkit to perform instruction-level analysis of CUBINs directly. Instead,
HPCToolkit must invoke NVIDIA’s nvdisasm command line utility to compute control flow
graphs for functions in a CUBIN. The version of nvdisasm in CUDA 10 is VERY SLOW
and fails to compute control flow graphs for some GPU functions. In such cases, hpcstruct
reverts to lightweight analysis of GPU functions that considers only line map information.
Because analysis of CUBINs using nvdisasm is VERY SLOW, it is not performed by de-
fault. 3 To enable detailed analysis of GPU functions, use the --gpucfg yes option to
hpcstruct, as shown below:

hpcstruct --gpucfg yes hpctoolkit-laghos-measurements

8.2.4 GPU Calling Context Tree Reconstruction

The CUPTI API returns flat PC samples without any information about GPU call
stacks. With complex code generated from template-based GPU programming models,
calling contexts on GPUs are essential for developers to understand the code and its per-
formance. Lawrence Livermore National Laboratory’s GPU-accelerated Quicksilver proxy
app [9] illustrates this problem. Figure 8.2 shows a hpcviewer screenshot of Quicksilver
without approximate reconstruction the GPU calling context tree. The figure shows a
top-down view of heterogeneous calling contexts that span both the CPU and GPU. In
the middle of the figure is a placeholder <gpu kernel> that is inserted by HPCToolkit.
Above the placeholder is a CPU calling context where a GPU kernel was invoked. Below
the <gpu kernel> placeholder, hpcviewer shows a dozen of the GPU functions that were
executed on behalf of the GPU kernel CycleTrackingKernel.

Currently, no API is available for efficiently unwinding call stacks on NVIDIA’s GPUs.
To address this issue, we designed a method to reconstruct approximate GPU calling con-
texts using post-mortem analysis. This analysis is only performed when (1) an execution
has been monitored using PC sampling, and (2) an execution’s CUBINs have analyzed in
detail using hpcstruct with the --gpucfg yes option.

To reconstruct approximate calling context trees for GPU computations, HPCToolkit
uses information about call sites identified by hpcstruct in conjunction with PC samples
measured for each call instruction in GPU binaries.

Without the ability to measure each function invocation in detail, HPCToolkit assumes
that each invocation of a particular GPU function incurs the same costs. The costs of each
GPU function are apportioned among its caller or callers using the following rules:

• If a GPU function G can only be invoked from a single call site, all of the measured
cost of G will be attributed to its call site.

3Before using the --gpucfg yes option, see the notes in the FAQ and Troubleshooting guide in Sec-
tion 12.5).

63

Figure 8.2: A screenshot of hpcviewer for the GPU-accelerated Quicksilver proxy app
without GPU CCT reconstruction.

• If a GPU function G can be called from multiple call sites and PC samples have
been collected for one or more of the call instructions for G, the costs for G are
proportionally divided among G’s call sites according to the distribution of PC samples
for calls that invoke G. For instance, consider the case where there are three call sites
where G may be invoked, 5 samples are recorded for the first call instruction, 10
samples are recorded for the second call instruction, and no samples are recorded for
the third call. In this case, HPCToolkit divides the costs for G among the first two
call sites, attributing 5/15 of G’s costs to the first call site and 10/15 of G’s costs to
the second call site.

• If no call instructions for a GPU function G have been sampled, the costs of G are
apportioned evenly among each of G’s call sites.

64

(0x10, 1)

(0x30, 1) (0x40, 2)

(0x50, 1)

(0x60, 1)

A2

(0x20, 1)

(0x70, 0)

C 0B3

D2 E3

F3

(a)

(0x10, 1)

(0x30, 1) (0x40, 2)

A2

(0x20, 1)

(0x70, 0)

C 0B3

D2 E3

F3

SCC5

(b)

(0x10, 1)

(0x30, 1) (0x40, 2)

A2

(0x70, 1)

B3

D3 E3

F3

SCC6

(c)

(0x10, 1)

(0x30, 1) (0x40, 2)

A2

(0x70, 1/3)

B3

D1 E1

F1

SCC

(0x70, 2/3)

D’2 E’2

F’2

SCC’42

(d)

Figure 8.3: Reconstruct a GPU calling context tree. A-F represent GPU functions. Each
subscript denotes the number of samples associated with the function. Each (a, c) pair
indicates an edge at address a has c call instruction samples.

IHPCToolkit’s hpcprof analyzes the static call graph associated with each GPU kernel
invocation. If the static call graph for the GPU kernel contains cycles, which arise from
recursive or mutually-recursive calls, hpcprof replaces each cycle with a strongly connected
component (SCC). In this case, hpcprof unlinks call graph edges between vertices within
the SCC and adds an SCC vertex to enclose the set of vertices in each SCC. The rest of
hpcprof’s analysis treats an SCC vertex as a normal “function” in the call graph.

Figure 8.3 illustrates the reconstruction of an approximate calling context tree for
a GPU computation given the static call graph (computed by hpcstruct from a CU-
BIN’s machine instructions) and PC sample counts for some or all GPU instructions
in the CUBIN. Figure 8.4 shows an hpcviewer screenshot for the GPU-accelerated
Quicksilver proxy app following reconstruction of GPU calling contexts using the algo-
rithm described in this section. Notice that after the reconstruction, one can see that
CycleTrackingKernel calls CycleTrackingGuts, which calls CollisionEvent, which even-
tually calls macroscopicCrossSection and NuclearData::getNumberOfReactions. The
the rich approximate GPU calling context tree reconstructed by hpcprof also shows loop
nests and inlined code.4

4The control flow graph used to produce this reconstruction for Quicksilver was computed with CUDA
11. You will not be able to reproduce these results with earlier versions of CUDA due to weaknesses in
nvdisasm prior to CUDA 11.

65

Figure 8.4: A screenshot of hpcviewer for the GPU-accelerated Quicksilver proxy app
with GPU CCT reconstruction.

66

Argument to hpcrun What is monitored

-e gpu=amd coarse-grain profiling of AMD GPU operations

-e gpu=amd -t coarse-grain profiling and tracing of AMD GPU op-
erations

Table 8.10: Monitoring performance on AMD GPUs when using AMD’s HIP and OpenMP
programming models and runtimes.

8.3 AMD GPUs

On AMD GPUs, HPCToolkit supports coarse-grain profiling of GPU-accelerated appli-
cations that offload GPU computation using AMD’s HIP programming model, OpenMP,
and OpenCL. Support for measuring the performance of GPU-accelerated OpenCL pro-
grams is common across all platforms; for that reason, we describe it separately in Sec-
tion 8.5.

Table 8.10 shows arguments to hpcrun to monitor the performance of GPU operations
by HIP and OpenMP programs on AMD GPUs. With this coarse-grain profiling support,
HPCToolkit can collect GPU operation timings (Table 8.1) and a subset of standard metrics
for GPU operations such as memory allocation and deallocation (Table 8.2), memory set
(Table 8.3), explicit memory copies (Table 8.4), and synchronization (Table 8.5).

At present, the hardware and software stack for AMD GPUs lacks support for fine-grain
(instruction-level) performance measurement of GPU computations.

8.4 Intel GPUs

HPCToolkit supports profiling and tracing of GPU-accelerated applications that offload
computation onto Intel GPUs using Intel’s Data-parallel C++ programming model sup-
ported by Intel’s icpx compiler, OpenMP computations offloaded with Intel’s ifx, icx, or
icpx compilers, or OpenCL. At program launch, a user can select whether Intel’s Data-
parallel C++ programming model is to execute atop Intel’s OpenCL runtime or Intel’s
Level Zero runtime. Support for measuring the performance of GPU-accelerated OpenCL
programs is common across all platforms; for that reason, we describe it separately in
Section 8.5.

Intel’s GPU compute runtime supports two kinds of GPU binaries: Intel’s classic Patch
Token binaries, and Intel’s new zeBinaries. Either or both kinds of binaries may be present
in any execution. Intel’s newer zeBinary format is preferred and is the default for Intel’s
current compiler and runtime versions.

Table 8.11 shows available options for using HPCToolkit with Intel’s Level Zero runtime.
HPCToolkit supports both coarse-grain profiling and tracing of GPU operations atop Intel’s
Level Zero runtime. With this coarse-grain profiling support, HPCToolkit can collect GPU
operation timings (Table 8.1) and a subset of standard metrics for GPU operations such as
memory allocation and deallocation (Table 8.2), memory set (Table 8.3), explicit memory
copies (Table 8.4), and synchronization (Table 8.5).

67

In addition to coarse-grain profiling and tracing, HPCToolkit supports instrumentation-
based measurement of GPU kernels on Intel GPUs using the Intel’s GTPin binary instru-
mentation tool in conjunction with the Level Zero runtime.

At present, HPCToolkit supports two types of instrumentation-based measurement of
GPU kernels on Intel GPUs: dynamic instruction counting and approximate attribution of
memory latency. Instrumentation can be combined with profiling and tracing in the same
execution.

Without hardware support for associating memory latency directly with individual mem-
ory accesses, HPCToolkit uses GTPin to instrument each basic-block in each GPU kernel
to measure how many cycles are spent in each basic block. HPCToolkit then approximately
attributes the memory latency in each basic block by dividing it up among the instructions
with variable length latency, such as memory accesses, in the block.

When you direct HPCToolkit to collect instruction-level measurements of GPU pro-
grams using (GTPin) instrumentation, instruction-level measurements can only be at-
tributed at the kernel level if your program’s GPU kernels are compiled without the -g

flag. When GPU kernels are compiled with -g (in addition to any optimization flags),
HPCToolkit can attribute instruction-level measurements within GPU kernels to inlined
templates and functions, loops, and individual source lines. If you find any kernel where
instrumentation-based metrics are attributed only at the kernel level, adjust your build so
that the kernel is compiled with -g.

8.5 Performance Measurement of OpenCL Programs

.
When using the OpenCL programming model on AMD, Intel, or NVIDIA GPUs, HPC-

Toolkit supports coarse-grain profiling and tracing of GPU activities. Supported metrics
include GPU operation timings (Table 8.1) and a subset of standard metrics for GPU op-
erations such as memory allocation and deallocation (Table 8.2), memory set (Table 8.3),
explicit memory copies (Table 8.4), and synchronization (Table 8.5)

Table 8.12 shows the possible command-line arguments to hpcrun for monitoring
OpenCL programs. There are two levels of monitoring: profiling, or profiling + trac-
ing. When tracing is enabled, HPCToolkit will collect a trace of activity for each OpenCL
command queue.

68

Argument to hpcrun What is monitored

-e gpu=level0 coarse-grain profiling of Intel GPU operations using
Intel’s Level 0 runtime

-e gpu=level0 -t coarse-grain profiling and tracing of Intel GPU oper-
ations using Intel’s Level 0 runtime

-e gpu=level0,inst=count coarse-grain profiling of Intel GPU operations using
Intel’s Level 0 runtime; fine-grain measurement of In-
tel GPU kernel executions using Intel’s GT-Pin for
instruction counting

-e gpu=level0,inst=count -t coarse-grain profiling and tracing of Intel GPU oper-
ations using Intel’s Level 0 runtime; fine-grain mea-
surement of Intel GPU kernel executions using Intel’s
GT-Pin for instruction counting

-e gpu=level0,inst=what coarse-grain profiling of Intel GPU operations us-
ing Intel’s Level 0 runtime; fine-grain measurement
of Intel GPU kernel executions using Intel’s GT-
Pin support values for what that include a comma-
separated list that may contain values drawn from
the set {count, latency, simd}

-e gpu=level0,inst=what -t coarse-grain profiling and tracing of Intel GPU oper-
ations using Intel’s Level 0 runtime; fine-grain mea-
surement of Intel GPU kernel executions using In-
tel’s GT-Pin support values for what that include a
comma-separated list that may contain values drawn
from the set {count, latency, simd}

Table 8.11: Monitoring performance on Intel GPUs when using Intel’s Level 0 runtime.

Argument to hpcrun What is monitored

-e gpu=opencl coarse-grain profiling of GPU operations using a plat-
form’s OpenCL runtime

-e gpu=opencl -t coarse-grain profiling and tracing of GPU operations
using a platform’s OpenCL runtime

Table 8.12: Monitoring performance on GPUs when using the OpenCL programming
model.

69

70

Chapter 9

Measurement and Analysis of
OpenMP Multithreading

HPCToolkit includes an implementation of the OpenMP Tools API known as OMPT
that was first defined in OpenMP 5.0. The OMPT interface enables HPCToolkit to extract
enough information to reconstruct user-level calling contexts from implementation-level
measurements.

In the unlikely event that there is a bad interaction between HPCToolkit’s support
for the OMPT interface and an OpenMP runtime, OMPT support may be disabled when
measuring your code with HPCToolkit by setting an environment variable, as shown below

export OMP TOOL=disabled

9.1 Monitoring OpenMP on the Host

Support for OpenMP 5.0 and OMPT is emerging in OpenMP runtimes. IBM’s LOMP
(Lightweight OpenMP Runtime) and recent versions of LLVM’s OpenMP runtime, AMD’s
AOMP, and Intel’s OpenMP runtime provide emerging support for OMPT. Support in these
implementations evolving, especially with respect to offloading computation onto TAR-
GET devices. A notable exception for a popular runtime that lacks OMPT support is the
GCC compiler suite’s libgomp. Fortunately, the LLVM OpenMP runtime, which supports
OMPT, is compatible with libgomp, at least on the host.1

In OpenMP implementations without support for the OMPT interface, HPCToolkit
records and reports implementation-level measurements of program executions. At the
implementation-level, work is typically partitioned between a primary (master) thread and
one or more worker threads. Without the OMPT interface, work executed by the mas-
ter thread can be associated with its full user-level calling context and is reported under
<program root>. However, OpenMP regions and tasks executed by worker threads typi-
cally can’t be associated with the calling context in which regions or tasks were launched.
Instead, the work is attributed to a worker thread outer context that polls for work, finds
the work, and executes the work. HPCToolkit reports such work under <thread root>.

1It appears that GCC’s support for OpenMP offloading can only be used with libgomp,

71

When an OpenMP runtime supports the OMPT interface, by registering callbacks using
the OMPT interface and making calls to OMPT interface operations in the runtime API,
HPCToolkit can gather information that enables it to reconstruct a global, user-level view
of the parallelism. Using the OMPT interface, HPCToolkit can attribute metrics for costs
incurred by worker threads in parallel regions back to the calling contexts in which those
parallel regions were invoked. In such cases, most or all work performance is attributed back
to global user-level calling contexts that are descendants of <program root>. When using
the OMPT interface, there may be some costs that cannot be attributed back to a global
user-level calling context in an OpenMP program. For instance, costs assocuated with
idle worker threads that can’t be associated with any parallel region may be attributed
to <omp idle>. Even when using the OMPT interface, some costs may be attributed
to <thread root>; however, such costs are typically small and are often associated with
runtime startup.

9.2 Monitoring OpenMP Offloading on GPUs

HPCToolkit includes support for using the OMPT interface to monitor offloading of
computations specified with OpenMP TARGET to GPUs and attributing them back to the
host calling contexts from which they were offloaded.

9.2.1 NVIDIA GPUs

OpenMP computations executing on NVIDIA GPUs are monitored whenever hpcrun’s
command-line witches are configured to monitor operations on NVIDIA GPUs, as described
in Section 8.2.1.

At this writing, NVIDIA’s OpenMP nvc++ compiler and runtime lack OMPT support.
Without OMPT support, HPCToolkit separates performance information for the OpenMP
primary thread from other OpenMP threads (and any other threads that may be present
at runtime, such as MPI helper threads). Performance of the primary thread is attributed
to <program root>; the performance of all other threads is attributed to <thread root>.
While this is not as easy to analyze and understand as the global, user-level calling context
view constructed using the OMPT interface, this approach can be used to analyze perfor-
mance data for OpenMP programs compiled with NVIDIA’s compilers using HPCToolkit.

LLVM-generated code for v12.0 or later have good host-side OMPT support in the
runtime. HPCToolkit does a good job associating the performance of kernels with global,
user-level CPU calling contexts in which they are launched.

Regardless of what compiler is used to offload OpenMP computations to NVIDIA GPUs,
HPCToolkit simplifies the host calling contexts to which it attributes GPU operations by
hiding all NVIDIA library frames that correspond to stripped code in NVIDIA’s CUDA
runtime. The presence of long chains of procedure frames only identified by their machine
code address in NVIDIA’s CUDA library in the calling contexts for GPU operations obscures
rather than enlightens; thus, suppressing them is appropriate.

72

9.2.2 AMD GPUs

OpenMP computations executing on AMD GPUs are monitored whenever hpcrun’s
command-line switches are configured to monitor operations on AMD GPUs, as described
in Section 8.3.

AMD’s ROCm 5.1 and later releases contains OMPT support for monitoring and
attributing host computations as well as computations offloaded to AMD GPUs using
OpenMP TARGET. When compiled with amdclang or amdclang++, both host compu-
tations and computations offloaded to AMD GPUs can be associated with global user-level
calling contexts that are children of <program root>.

Cray’s compilers only have partial support for the OMPT interface, which renders HPC-
Toolkit unable to elide implementation-level details of parallel regions. For everyone but
compiler or runtime developers, such details are unnecessary and make it harder for appli-
cation developers to understand their code with no added value.

9.2.3 Intel GPUs

OpenMP computations executing on Intel GPUs are monitored whenever hpcrun’s
command-line switches are configured to monitor operations on Intel GPUs, as described
in Section 8.4.

Intel’s OneAPI ifx and icx compilers, which support OpenMP offloading in their
OpenMP runtime atop Intel’s latest GPU-enabled Level Zero runtime, provide support
for the OMPT tools interface. The implementation of host-side OMPT callbacks in Intel’s
OpenMP runtime is sufficient for attributing GPU work to global, user-level calling contexts
rooted at <program root>.

73

74

Chapter 10

Analyzing Performance Data with
hpcviewer

HPCToolkit provides the hpcviewer [2, 20] performance presentation tool for inter-
active examination of performance databases. hpcviewer presents a heterogeneous calling
context tree that spans both CPU and GPU contexts, annotated with measured or derived
metrics to help users assess code performance and identify bottlenecks.

The database generated by hpcprof consists of 4 dimensions: execution context (also
called execution profile), time, tree node context, and metric. We employ the term execution
context to include any logical threads (such as OpenMP, pthread and C++ threads), and
also MPI processes and GPU streams. The time dimension represents the timeline of the
program’s execution, and tree node context depicts a top-down path in a calling-context
tree. This time dimension is only available if the application is profiled with traces enabled
(hpcrun -t option). Finally, the metric dimension constitutes program measurements per-
formed by hpcrun such as cycles, number of instructions, stall percentages and also some
derived metrics such as ratio of idleness.

To simplify performance data visualization, hpcviewer restricts display two dimensions
at a time: the Profile view (Section 10.2) displays pairs of ⟨tree node context, metric⟩ or
⟨execution context, metric⟩ dimensions; and the Trace viewer (Section 10.9) visualizes the
behavior of execution contexts over time. Table below summarizes views supportted by
hpcviewer.

75

View Dimension Note

Profile view - Table Tree node context x
Metrics

display the tree and its associated metrics

Profile view - Thread Tree node context x
Metrics

display the tree and its metrics for a set of
execution contexts

Profile view - Graph Execution contexts
x Metrics

display a metric of a specific tree node for all
execution contexts

Trace view - Main Execution contexts
x Time

display execution context behavior over time

Trace view - Depth Tree node context x
Time

display call stacks over time of an execution
context

Note that in the Profile view, GPU stream execution contexts are not shown in this
view; metrics for a GPU operation are associated with the calling context in the thread
that initiated the GPU operation (Section 10.6). In the Trace view, GPU streams have
their own trace lines independently from their host so that it allows to separate traces
between hosts and devices.

10.1 Launching

Requirements to launch hpcviewer:

• On all platforms: Java 11 or newer (up to Java 17). Java 20 or newer are not supported
yet.

• On Linux: GTK 3.20 or newer.

hpcviewer can either be launched from a command line (Linux platforms) or by clicking
the hpcviewer icon (for Windows, Mac OS X and Linux platforms). The command line
syntax is as follows:

hpcviewer [options] [<hpctoolkit-database>]

Here, <hpctoolkit-database> is an optional argument to load a database automatically.
Without this argument, hpcviewer will prompt for the location of a database. Possible
options for hpcviewer are shown in the table below:

-h, --help Print a help message.

-jh, --java-heap size Set the JVM maximum heap size for this execution of
hpcviewer. The value of size must be in megabytes (M) or
gigabytes (G). For example, one can specify a size of 3 giga-
bytes as either 3076M or 3G.

-v, --version Print the current version

On Linux, when hpcviewer is installed using its install.sh script, which chooses a
default maximum size for the Java heap on the current platform. When analyzing mea-
surements for large and complex applications, it may be necessary to use the --java-heap

76

Figure 10.1: An annotated screenshot of hpcviewer’s interface.

option to specify a larger heap size for hpcviewer to accommodate many metrics for many
contexts.

On MacOs and Windows the value of JVM maximum heap size is stored in
hpcviewer.ini file, specified with -Xmx option. On MacOS, this file is located at
hpcviewer.app/Contents/Eclipse/hpcviewer.ini.

10.2 Profile View

This view is the default view and displays pairs of ⟨context, metric⟩ dimensions. It
interactively presents context-sensitive performance metrics correlated to program structure
and mapped to a program’s source code, if available. It can present an arbitrary collection
of performance metrics gathered during one or more runs or compute derived metrics.

77

Figure 10.1 shows an annotated screenshot of hpcviewer’s user interface presenting a
call path profile. The annotations highlight hpcviewer’s principal window panes and key
controls. The browser window is divided into three panes. The Source pane (top) displays
program source code. The Navigation and Metric panes (bottom) associate a table of
performance metrics with static or dynamic program structure. These panes are discussed
in more detail in Section 10.3.

hpcviewer displays calling-context-sensitive performance data in three different views:
a top-down Top-down View, a bottom-up Bottom-up View, and a Flat View. One selects
the desired view by clicking on the corresponding view control tab. We briefly describe the
three views and their corresponding purposes.

• Top-down View. This top-down view shows the dynamic calling contexts (call
paths) in which costs were incurred. Using this view, one can explore performance
measurements of an application in a top-down fashion to understand the costs incurred
by calls to a procedure in a particular calling context. We use the term cost rather
than simply time since hpcviewer can present a multiplicity of metrics such as cycles,
or cache misses) or derived metrics (e.g. cache miss rates or bandwidth consumed)
that that are other indicators of execution cost.

A calling context for a procedure f consists of the stack of procedure frames active
when the call was made to f. Using this view, one can readily see how much of the ap-
plication’s cost was incurred by f when called from a particular calling context. If finer
detail is of interest, one can explore how the costs incurred by a call to f in a partic-
ular context are divided between f itself and the procedures it calls. HPCToolkit’s
call path profiler hpcrun and the hpcviewer user interface distinguish calling context
precisely by individual call sites; this means that if a procedure g contains calls to
procedure f in different places, these represent separate calling contexts.

• Bottom-up View. This bottom-up view enables one to look upward along call paths.
The view apportions a procedure’s costs to its callers and, more generally, its calling
contexts. This view is particularly useful for understanding the performance of soft-
ware components or procedures that are used in more than one context. For instance,
a message-passing program may call MPI_Wait in many different calling contexts.
The cost of any particular call will depend upon the structure of the parallelization
in which the call is made. Serialization or load imbalance may cause long waits in
some calling contexts while other parts of the program may have short waits because
computation is balanced and communication is overlapped with computation.

When several levels of the Bottom-up View are expanded, saying that the Bottom-up
View apportions metrics of a callee on behalf of its callers can be confusing. More
precisely, the Bottom-up View apportions the metrics of a procedure on behalf of the
various calling contexts that reach it.

• Flat View. This view organizes performance measurement data according to the
static structure of an application. All costs incurred in any calling context by a
procedure are aggregated together in the Flat View. This complements the Top-down
View, in which the costs incurred by a particular procedure are represented separately
for each call to the procedure from a different calling context.

78

10.3 Panes

hpcviewer’s browser window is divided into three panes: the Navigation pane, Source
pane, and the Metrics pane. We briefly describe the role of each pane.

10.3.1 Source Pane

The source pane displays the source code associated with the current entity selected
in the navigation pane. When a performance database is first opened with hpcviewer,
the source pane is initially blank because no entity has been selected in the navigation
pane. Selecting any entity in the navigation pane will cause the source pane to load the
corresponding file, scroll to and highlight the line corresponding to the selection. Switching
the source pane to view to a different source file is accomplished by making another selection
in the navigation pane.

10.3.2 Navigation Pane

The navigation pane presents a hierarchical tree-based structure that is used to organize
the presentation of an applications’s performance data. Entities that occur in the navigation
pane’s tree include load modules, files, procedures, procedure activations, inlined code,
loops, and source lines. Selecting any of these entities will cause its corresponding source
code (if any) to be displayed in the source pane. One can reveal or conceal children in this
hierarchy by ‘opening’ or ‘closing’ any non-leaf (i.e., individual source line) entry in this
view.

The nature of the entities in the navigation pane’s tree structure depends upon whether
one is exploring the Top-down View, the Bottom-up View, or the Flat View of the perfor-
mance data.

• In the Top-down View, entities in the navigation tree represent procedure acti-
vations, inlined code, loops, and source lines. While most entities link to a single
location in source code, procedure activations link to two: the call site from which a
procedure was called and the procedure itself.

• In the Bottom-up View, entities in the navigation tree are procedure activations.
Unlike procedure activations in the top-down view in which call sites are paired with
the called procedure, in the bottom-up view, call sites are paired with the calling
procedure to facilitate attribution of costs for a called procedure to multiple different
call sites and callers.

• In the Flat View, entities in the navigation tree correspond to source files, procedure
call sites (which are rendered the same way as procedure activations), loops, and
source lines.

Navigation Control

The header above the navigation pane contains some controls for the navigation and
metric view. In Figure 10.1, they are labeled as “navigation/metric control.”

79

• Flatten / Unflatten (only available for the Flat View):

Enabling to flatten and unflatten the navigation hierarchy. Clicking on the flatten
button (the icon that shows a tree node with a slash through it) will replace each
top-level scope shown with its children. If a scope has no children (i.e., it is a leaf),
the node will remain in the view. This flattening operation is useful for relaxing the
strict hierarchical view so that peers at the same level in the tree can be viewed and
ranked together. For instance, this can be used to hide procedures in the Flat View
so that outer loops can be ranked and compared to one another. The inverse of the
flatten operation is the unflatten operation, which causes an elided node in the tree
to be made visible once again.

• Zoom-in / Zoom-out :

Depressing the up arrow button will zoom in to show only information for the selected
line and its descendants. One can zoom out (reversing a prior zoom operation) by
depressing the down arrow button.

• Hot call path :

This button is used to automatically reveal and traverse the hot call path rooted at
the selected node in the navigation pane with respect to the selected metric column.
Let n be the node initially selected in the navigation pane. A hot path from n is
traversed by comparing the values of the selected metric for n and its children. If one
child accounts for T% or more (where T is the threshold value for a hot call path) of
the cost at n, then that child becomes n and the process repeats recursively.

• Add derived metric :

Create a new metric by specifying a mathematical formula. See Section 10.5 for more
details.

• Hide/show metrics :

Show or hide metric columns. A dialog box will appear and the user can select which
metric columns should be shown. See Section 10.8.2 section for more details.

• Resizing metric columns / :

Resize the metric columns based on either the width of the data, or the width of both
of the data and the column’s label.

• Export into a CSV format file :

Export the current metric table into a comma separated value (CSV) format file. This
feature only exports all metrics that are currently shown. Metrics that are not shown
in the view (whose scopes are not expanded) will not be exported (we assume these
metrics are not significant).

• Increase font size / Decrease font size :

Increase or decrease the size of the navigation and metric panes.

80

• Show a graph of metric values :

Show a graph (a plot, a sorted plot or a histogram) of metric values associated with
the selected node in CCT for all processes or threads (Section 10.6.1).

• Show the metrics of a set of threads :

Show the CCT and the metrics of a seletected threads (Section 10.6.2).

Context menus

Navigation control also provides several context menus by clicking the right-button of
the mouse.

• Copy: Copy into clipboard the selected line in navigation pane which includes the
name of the node in the tree, and the values of visible metrics in metric pane (Section
10.3.3). The values of hidden metrics will not be copied.

• Find: Display the Find window to allow the user to search a text within the Scope
column of the current table. The window has several options such as case sensitivity,
whole word search and using regular expressions.

10.3.3 Metric Pane

The metric pane displays one or more performance metrics associated with entities to
the left in the navigation pane. Entities in the tree view of the navigation pane are sorted
at each level of the hierarchy by the metric in the selected column. When hpcviewer is
launched, the leftmost metric column is the default selection and the navigation pane is
sorted according to the values of that metric in descending order. One can change the
selected metric by clicking on a column header. Clicking on the header of the selected
column toggles the sort order between descending and ascending.

During analysis, one often wants to consider the relationship between two metrics. This
is easier when the metrics of interest are in adjacent columns of the metric pane. One can
change the order of columns in the metric pane by selecting the column header for a metric
and then dragging it left or right to its desired position. The metric pane also includes
scroll bars for horizontal scrolling (to reveal other metrics) and vertical scrolling (to reveal
other scopes). Vertical scrolling of the metric and navigation panes is synchronized.

10.4 Understanding Metrics

hpcviewer can present an arbitrary collection of performance metrics gathered during
one or more runs, or compute derived metrics expressed as formulae. A derived metric may
be specified with a formula that typically uses one or more existing metrics as terms in an
expression.

For any given scope in hpcviewer’s three views, hpcviewer computes both inclusive and
exclusive metric values. First, consider the Top-down View. Inclusive metrics reflect costs
for the entire subtree rooted at that scope. Exclusive metrics are of two flavors, depending
on the scope. For a procedure, exclusive metrics reflect all costs within that procedure

81

file1.c file2.c

f () {

g ();

}

// m is the main routine

m () {

f ();

g ();

}

// g can be a recursive function

g () {

if (. .) g ();

if (. .) h ();

}

h () {

}

Figure 10.2: A sample program divided into two source files.

but excluding callees. In other words, for a procedure, costs are exclusive with respect to
dynamic call chains. For all other scopes, exclusive metrics reflect costs for the scope itself;
i.e., costs are exclusive with respect to static structure. The Bottom-up and Flat Views
contain inclusive and exclusive metric values that are relative to the Top-down View. This
means, e.g., that inclusive metrics for a particular scope in the Bottom-up or Flat View are
with respect to that scope’s subtree in the Top-down View.

10.4.1 How Metrics are Computed

Call path profile measurements collected by hpcrun correspond directly to the Top-down
View. hpcviewer derives all other views from exclusive metric costs in the Top-down View.
For the Bottom-up View, hpcviewer collects the cost of all samples in each function and
attribute that to a top-level entry in the Bottom-up View. Under each top-level function,
hpcviewer can look up the call chain at all of the context in which the function is called.
For each function, hpcviewer apportions its costs among each of the calling contexts in
which they were incurred. hpcviewer computes the Flat View by traversing the calling
context tree and attributing all costs for a scope to the scope within its static source code
structure. The Flat View presents a hierarchy of nested scopes for load modules, files,
procedures, loops, inlined code and statements.

10.4.2 Example

Figure 10.2 shows an example of a recursive program separated into two files, file1.c
and file2.c. In this figure, we use numerical subscripts to distinguish between differ-
ent instances of the same procedure. In the other parts of this figure, we use alphabetic
subscripts. We use different labels because there is no natural one-to-one correspondence
between the instances in the different views.

Routine g can behave as a recursive function depending on the value of the condition
branch (lines 3–4). Figure 10.3 shows an example of the call chain execution of the program
annotated with both inclusive and exclusive costs. Computation of inclusive costs from

82

Figure 10.3: Top-down View. Each node of the tree has three boxes: the left-most is the
name of the node (or in this case the name of the routine, the center is the inclusive value,
and on the right is the exclusive value.

Figure 10.4: Bottom-up View

exclusive costs in the Top-down View involves simply summing up all of the costs in the
subtree below.

In this figure, we can see that on the right path of the routine m, routine g (instantiated
in the diagram as g1) performed a recursive call (g2) before calling routine h. Although
g1, g2 and g3 are all instances from the same routine (i.e., g), we attribute a different cost
for each instance. This separation of cost can be critical to identify which instance has a
performance problem.

Figure 10.4 shows the corresponding scope structure for the Bottom-up View and the
costs we compute for this recursive program. The procedure g noted as ga (which is a root
node in the diagram), has different cost to g as a callsite as noted as gb, gc and gd. For
instance, on the first tree of this figure, the inclusive cost of ga is 9, which is the sum of the
highest cost for each path in the calling context tree shown in Figure 10.3 that includes g:
the inclusive cost of g3 (which is 3) and g1 (which is 6). We do not attribute the cost of g2
here since it is a descendant of g1 (in other term, the cost of g2 is included in g1).

83

Figure 10.5: Flat View

Inclusive costs need to be computed similarly in the Flat View. The inclusive cost of a
recursive routine is the sum of the highest cost for each branch in calling context tree. For
instance, in Figure 10.5, The inclusive cost of gx, defined as the total cost of all instances of
g, is 9, and this is consistently the same as the cost in the bottom-up tree. The advantage
of attributing different costs for each instance of g is that it enables a user to identify which
instance of the call to g is responsible for performance losses.

10.5 Derived Metrics

Frequently, the data become useful only when combined with other information such
as the number of instructions executed or the total number of cache accesses. While users
don’t mind a bit of mental arithmetic and frequently compare values in different columns
to see how they relate for a scope, doing this for many scopes is exhausting. To address
this problem, hpcviewer provides a mechanism for defining metrics. A user-defined metric
is called a “derived metric.” A derived metric is defined by specifying a spreadsheet-like
mathematical formula that refers to data in other columns in the metric table by using $n
to refer to the value in the nth column.

10.5.1 Formulae

The formula syntax supported by hpcviewer is inspired by spreadsheet-like in-fix math-
ematical formulae. Operators have standard algebraic precedence.

10.5.2 Examples

Suppose the database contains information from five executions, where the same two
metrics were recorded for each:

1. Metric 0, 2, 4, 6 and 8: total number of cycles

2. Metric 1, 3, 5, 7 and 9: total number of floating point operations

To compute the average number of cycles per floating point operation across all of the
executions, we can define a formula as follows:

avg($0, $2, $4. $6. $8) / avg($1, $3, $5, $7, $9)

84

Figure 10.6: Derived metric dialog box

10.5.3 Creating Derived Metrics

A derived metric can be created by clicking the Derived metric tool item in the
navigation/control pane. A derived metric window will then appear as shown in Figure 10.6.

The window has two main parts:

• Derived metric definition, which consists of:

– New name for the derived metric. Supply a string that will be used as the column
header for the derived metric. If you don’t supply one, the metric will have no
name.

– Formula definition field. In this field the user can define a formula with
spreadsheet-like mathematical formula. This field must be filled. A user can
type a formula into this field, or use the buttons in the Assistance pane below
below to help insert metric terms or function templates.

– Metrics. This is used to find the ID of a metric. For instance, in this snapshot,
the metric WALLCLOCK has the ID 2. By clicking the button Insert metric,
the metric ID will be inserted in formula definition field. A metric may refer to

85

the value at an individual node in the calling context tree (point-wise) or the
value at the root of the calling context tree (aggregate).

– Functions. This is to guide the user who wants to insert functions in the formula
definition field. Some functions require only one metric as the argument, but
some can have two or more arguments. For instance, the function avg() which
computes the average of some metrics, needs at least two arguments.

• Advanced options:

– Augment metric value display with a percentage relative to column total. When
this box is checked, each scope’s derived metric value will be augmented with a
percentage value, which for scope s is computed as the 100 * (s’s derived metric
value) / (the derived metric value computed by applying the metric formula
to the aggregate values of the input metrics for the entire execution). Such a
computation can lead to nonsensical results for some derived metric formulae.
For instance, if the derived metric is computed as a ratio of two other metrics,
the aforementioned computation that compares the scope’s ratio with the ratio
for the entire program won’t yield a meaningful result. To avoid a confusing
metric display, think before you use this button to annotate a metric with its
percent of total.

– Default format. This option will display the metric value using scientific notation
with three digits of precision, which is the default format.

– Display metric value as percent. This option will display the metric value for-
matted as a percent with two decimal digits. For instance, if the metric has a
value 12.3415678, with this option, it will be displayed as 12.34%.

– Custom format. This option will present the metric value with your customized
format. The format is equivalent to Java’s Formatter class, or similar to C’s printf
format. For example, the format ”%6.2f” will display six digit floating-points
with two digits to the right of the decimal point.

Note that the entered formula and the metric name will be stored automatically. One
can then review again the formula (or metric name) by clicking the small triangle of the
combo box.

10.6 Metrics in Execution-context level

Execution context is an abstract concept of a measurable code execution. For exam-
ple, in a pure MPI application, an execution context is an MPI rank, while an execution
context of an OpenMP application is an OpenMP thread, and an execution context of GPU
applications can be a GPU stream. For hybrid MPI+OpenMP applications, its execution
context is its MPI rank and its OpenMP master and worker threads.

There are two types of execution context: physical such as NODE and CORE, and
logical like RANK, THREAD, GPUCONTEXT and GPUSTREAM. NODE is the id of
the compute node, RANK is the rank of the process (like MPI), CORE is the CPU core
where the application thread is bound to, THREAD is the application CPU thread (such as

86

Figure 10.7: Plot graph view of a procedure in GAMESS MPI+OpenMP application
showing a imbalance where a group of execution contexts have much higher GPU operations
than others.

OpenMP thread), GPUCONTEXT is a context used to access a GPU (like GPU device),
and GPUSTREAM is a stream or queue used to push work to a GPU.

10.6.1 Plot Graphs

HPCToolkit Experiment databases that have been generated by hpcprof can be
used by hpcviewer to plot graphs of metric values for each execution context. This is
particularly useful for quickly assessing load imbalance in context across the several threads
or processes of an execution. Figure 10.7 shows hpcviewer rendering such a plot. The
horizontal axis shows application execution context sorted by index (in this case it’s MPI
rank and OpenMP thread). The vertical axis shows metric values for each execution context.
Because hpcviewer can generate scatter plots for any node in the Top-down View, these
graphs are calling-context sensitive.

To create a graph, first select a scope in the Top-down View; in the Figure 10.7, the

procedure gpu tdhf apb j06 pppp is selected. Then, click the graph button to show the
associated sub-menus. At the bottom of the sub-menu is a list of metrics that hpcviewer
can graph. Each metric contains a sub-menu that lists the three different types of graphs
hpcviewer can plot.

• Plot graph. This standard graph plots metric values by ordered by their execution
context.

• Sorted plot graph. This graph plots metric values in ascending order.

87

Figure 10.8: A snapshot of a thread filter dialog. Users can refine the list of threads using
regular expression by selecting the Regular expression checkbox.

• Histogram graph. This graph is a histogram of metric values. It divides the range
of metric values into a small number of sub-ranges. The graph plots the frequency
that a metric value falls into a particular sub-range.

Note that the plot graph’s execution context have the following notation:

<process_id> . <thread_id>

Hence, if the ranks are 0.0, 0.1, . . . 31.0, 31.1 it means MPI process 0 has two threads:
thread 0 and thread 1 (similarly with MPI process 31).

Currently, it is only possible to generate scatter plots for metrics directly collected by
hpcrun, which excludes derived metrics created within hpcviewer.

10.6.2 Thread View

hpcviewer also provides a feature to view the metrics of a certain execution contexts
(threads and/or processes) named Thread View.

hpcviewer also provides a feature to view the metrics of a certain threads (or processes)
named Thread View. To select a thread or group of threads, you need to use the thread
selection window by clicking button from the calling-context view. On the thread selec-
tion window (Figure 10.8), you need to select the checkbox of the threads of interest. To
narrow the list, one can specify the thread name on the filter part of the window. Hence,
to specify just a main thread (thread zero), one can type:

THREAD 0

88

Figure 10.9: Example of a Thread View which display thread-level metrics of a set of
threads. The first column is a CCT equivalent to the CCT in the Top-down View, the
second and third columns represent the metrics of the selected threads (in this case they
are the sum of metrics from threads 0.1, to 7.1)

on the filter, and the view only lists all threads 0 (such as RANK 1 THREAD 0, RANK 2
THREAD 0, RANK 3 THREAD 0 . . .).

Once threads have been selected, you can click OK, and the Thread view (Figure 10.9)
will be activated. The tree of the view is the same as the tree from the top-down view, with
the metrics only from the selected execution contexts. If there are more than one selected
execution contexts, the metrics are the sum of the metric values.

10.7 Filtering Tree Nodes

Occasionally, It is useful to omit uninterested nodes of the tree to enable to focus on
important parts. For instance, you may want to hide all nodes associated with OpenMP run-
time and just show all nodes and metrics from the application. For this purpose, hpcviewer
provides filtering to elide nodes that match a filter pattern. hpcviewer allows users to de-
fine multiple filters, and each filter is associated with a glob pattern1 and a type. There are
three types of filter: “self only” to omit matched nodes, “descendants only” to exclude only
the subtree of the matched nodes, and “self and descendants” to remove matched nodes
and its descendants.

Self only : This filter is useful to hide intermediary runtime functions such as pthread
or OpenMP runtime functions. All nodes that match filter patterns will be removed, and
their children will be augmented to the parent of the elided nodes. The exclusive cost of
the elided nodes will be also augmented into the exclusive cost of the parent of the elided
nodes. Figure 10.10b shows the result of filtering node C of the CCT from Figure 10.10a.
After filtering, node C is elided and its exclusive cost is augmented into the exclusive cost
of its parent (node A). The children of node C (nodes D and E) are now the children of node
A.

1A glob pattern specifies which name to be removed by using wildcard characters such as *, ? and +

89

(a) The original CCT tree.

(b) The result of applying self only filter
on node C. Node C is elided and its children
(nodes D and E) are augmented to the parent
of node C. The exclusive cost of node C is also
augmented to node A.

(c) The result of applying Descendants only
filter on node C. All the children of node C

(nodes D and E) are elided, and the total of
their exclusive cost is added to node C.

(d) The result of applying self and descen-
dants filter on node C. Nodes C and its de-
scendants are elided, and their exclusive cost
is augmented to node A which is the parent
of node C.

Figure 10.10: Different results of filtering on node C from Figure 10.10a (the original
CCT). Figure 10.10b shows the result of self only filter, Figure 10.10c shows the result of
descendants only filter, and Figure 10.10d shows the result of self and descendants filter.
Each node is attributed with two boxes on its right. The left box represents the node’s
inclusive cost, while the right box represents the exclusive cost.

Figure 10.11: The window of filter property.

90

Descendants only : This filter elides only the subtree of the matched node, while the
matched node itself is not removed. A common usage of this filter is to exclude any call
chains after MPI functions. As shown in Figure 10.10c, filtering node C incurs nodes D and
E to be elided and their exclusive cost is augmented to node C.

Self and descendants : This filter elides both the matched node and its subtree. This
type is useful to exclude any unnecessary details such as glibc or malloc functions. Fig-
ure 10.10d shows that filtering node C will elide the node and its children (nodes D and E).
The total of the exclusive cost of the elided nodes is augmented to the exclusive cost of
node A.

The filter feature can be accessed by clicking the menu “Filter” and then submenu
“Show filter property”, which will then show a Filter property window (Figure 10.11). The
window consists of a table of filters, and a group of action buttons: add to create a new
filter; edit to modify a selected filter; and delete to remove a set of selected filters.. The
table comprises of two columns: the left column is to display a filter’s switch whether the
filter is enabled or disabled, and a glob-like filter pattern; and the second column is to show
the type of pattern (self only, children only or self and children). If a checkbox is checked,
it signifies the filter is enabled; otherwise the filter is disabled.

Cautious is needed when using filter feature since it can change the shape of the tree,
thus affects different interpretation of performance analysis. Furthermore, if the filtered
nodes are children of a “fake” procedures (such as <program root> and <thread root>),
the exclusive metrics in Bottom-up view and flat view can be misleading. This occurs since
these views do not show “fake” procedures.

Note that the filter set is global that it affects all open databases in all windows, and it
is persistent that it will also affect across hpcviewer sessions.

10.8 Convenience Features

In this section we describe some features of hpcviewer that help improve productivity.

10.8.1 Editor Pane

The editor pane is used to display a copy of your program’s source code or HPC-
Toolkit’s performance data in XML format; for this reason, it does not support editing of
the pane’s contents. To edit your program, you should use your favorite editor to edit your
original copy of the source, not the one stored in HPCToolkit’s performance database.
Thanks to built-in capabilities in Eclipse, hpcviewer supports some useful shortcuts and
customization:

• Find. To search for a string in the current source pane, <ctrl>-f (Linux and
Windows) or <command>-f (Mac) will bring up a find dialog that enables you to
enter the target string.

10.8.2 Metric Pane

For the metric pane, hpcviewer has some convenient features:

91

• Sorting the metric pane contents by a column’s values. First, select the column
on which you wish to sort. If no triangle appears next to the metric, click again. A
downward pointing triangle means that the rows in the metric pane are sorted in
descending order according to the column’s value. Additional clicks on the header of
the selected column will toggle back and forth between ascending and descending.

• Changing column width. To increase or decrease the width of a column, first put
the cursor over the right or left border of the column’s header field. The cursor will
change into a vertical bar between a left and right arrow. Depress the mouse and drag
the column border to the desired position.

• Changing column order. If it would be more convenient to have columns displayed
in a different order, they can be permuted as you wish. Depress and hold the mouse
button over the header of column that you wish to move and drag the column right
or left to its new position.

• Copying selected metrics into clipboard. In order to copy selected lines of
scopes/metrics, one can right click on the metric pane or navigation pane then select
the menu Copy. The copied metrics can then be pasted into any text editor.

• Hiding or showing metric columns. Sometimes, it may be more convenient to
suppress the display of metrics that are not of current interest. When there are too
many metrics to fit on the screen at once, it is often useful to suppress the display of
some. The icon above the metric pane will bring up the metric property pane on
the source pane area.

The pane contains a list of metrics sorted according to their order in HPCToolkit’s
performance database for the application. Each metric column is prefixed by a check
box to indicate if the metric should be displayed (if checked) or hidden (unchecked). To
display all metric columns, one can click the Check all button. A click to Uncheck
all will hide all the metric columns. The pane also allows to edit the name of the
metric or change the formula of a derived metric. If the metric has no cost, it will be
marked with grey color and it isn’t editable.

Finally, an option Apply to all views will set the configuration into all views (Top-
down, Bottom-up and Flat views) when checked. Otherwise, the configuration will be
applied only on the current view.

10.9 Trace view

Trace view [20] is a time-centric user interface for interactive examination of a sample-
based time series (hereafter referred to as a trace) view of a program execution. Trace
view can interactively present a large-scale execution trace without concern for the scale of
parallelism it represents.

To collect a trace for a program execution, one must instruct HPCToolkit’s mea-
surement system to collect a trace. When launching a dynamically-linked executable with
hpcrun, add the -t flag to enable tracing. When launching a statically-linked executable,
set the environment variable HPCRUN_TRACE=1 to enable tracing. When collecting a trace,

92

Figure 10.12: Logical view of trace call path samples on three dimensions: time, execution
context (rank/thread/GPU) and call path depth.

one must also specify a metric to measure. The best way to collect a useful trace is to
asynchronously sample the execution with a time-based metric such as REALTIME, CYCLES,
or CPUTIME.

As shown in Figure 10.12, call path traces consist of data in three dimensions: profile
(process/thread rank), time, and call path depth. A crosshair in Trace view is defined by a
triplet (p, t, d) where p is the selected process/thread rank, t is the selected time, and d is
the selected call path depth.

Trace view renders a view of processes and threads over time. The Depth View (Sec-
tion 10.9.2) shows the call path depth over time for the thread selected by the cursor. Trace
view’s Call Stack View (Section 10.9.4) shows the call path associated with the thread and
time pair specified by the cursor. Each of these views plays a role for understanding an
application’s performance.

In Trace view, each procedure is assigned specific color. Figure 10.12 shows that at
depth 1 each call path has the same color: blue. This node represents the main program
that serves as the root of the call chain in all process at all times. At depth 2, all processes
have a green node, which indicates another procedure. At depth 3, in the first time step all
processes have a yellow node; in subsequent time steps they have purple nodes. This might
indicate that the processes first are observed in an initialization procedure (represented by
yellow) and later observed in a solve procedure (represented by purple). The pattern of
colors that appears in a particular depth slice of the Main View enables a user to visually
identify inefficiencies such as load imbalance and serialization.

Figures 10.13 and 10.14 show screenshots of Trace view’s capabilities in presenting
call path traces. Figure 10.13 highlights Trace view’s four principal window panes: Main
View(the main view), Depth View, Call Stack View and Mini Map View, while Figure10.14
shows additional two window panes: Summary View and Statistics View.

93

Figure 10.13: A screenshot of hpcviewer’s Trace view.

Figure 10.14: A screenshot of hpcviewer’s Trace view showing the Summary View and
Statistics View.

• Main View (top, left pane): This is Trace view’s primary view. This view, which
is similar to a conventional process/time (or space/time) view, shows time on the
horizontal axis and process (or thread) rank on the vertical axis; time moves from
left to right. Compared to typical process/time views, there is one key difference.
To show call path hierarchy, the view is actually a user-controllable slice of the
process/time/call-path space. Given a call path depth, the view shows the color
of the currently active procedure at a given time and process rank. (If the requested
depth is deeper than a particular call path, then Trace view simply displays the deep-

94

est procedure frame and, space permitting, overlays an annotation indicating the fact
that this frame represents a shallower depth.)

Trace view assigns colors to procedures based on (static) source code procedures.
Although the color assignment is currently random, it is consistent across the different
views. Thus, the same color within the Trace and Depth Views refers to the same
procedure.

The Trace View has a white crosshair that represents a selected point in time and
process space. For this selected point, the Call Path View shows the corresponding
call path. The Depth View shows the selected process.

• Depth View (tab in bottom, left pane): This is a call-path/time view for the process
rank selected by the Main View’s crosshair. Given a process rank, the view shows for
each virtual time along the horizontal axis a stylized call path along the vertical axis,
where ‘main’ is at the top and leaves (samples) are at the bottom. In other words,
this view shows for the whole time range, in qualitative fashion, what the Call Path
View shows for a selected point. The horizontal time axis is exactly aligned with the
Trace View’s time axis; and the colors are consistent across both views. This view has
its own crosshair that corresponds to the currently selected time and call path depth.

• Summary View (tab in bottom, left pane): The view shows for the whole time range
displayed, the proportion of each subroutine in a certain time. Similar to Depth view,
the time range in Summary reflects to the time range in the Trace view.

• Call Stack View (tab in top, right pane): This view shows two things: (1) the
current call path depth that defines the hierarchical slice shown in the Trace View;
and (2) the actual call path for the point selected by the Trace View’s crosshair.
(To easily coordinate the call path depth value with the call path, the Call Path
View currently suppresses details such as loop structure and call sites; we may use
indentation or other techniques to display this in the future.)

• Statistics View (tab in top, right pane): This view shows the list of procedures active
in the space-time region shown in the Trace View at the current Call Path Depth.
Each procedure’s percentage in the Statistics View indicates the percentage of pixels
in the Trace View pane that are filled with this procedure’s color at the current Call
Path Depth. When the Trace View is navigated to show a new time-space interval or
the Call Path Depth is changed, the statistics view will update its list of procedures
and the percentage of execution time to reflect the new space-time interval or depth
selection.

• GPU Idleness Blame View (tab in top, right pane): The view shows the list of
procedures that cause GPU idleness displayed in the trace view. If the trace view
displays one CPU thread and multiple GPU streams, then the CPU thread will be
blamed for the idleness for those GPU streams. If the view contains more than one
CPU threads and multiple GPU streams, then the cost of idleness is share among the
CPU threads.

95

• Mini Map View (right, bottom): The Mini Map shows, relative to the process/time
dimensions, the portion of the execution shown by the Trace View. The Mini Map
enables one to zoom and to move from one close-up to another quickly.

10.9.1 Main View

Main View is divided into two parts: the top part which contains action pane and the
information pane, and the main canvas which displays the traces.

The buttons in the action pane are the following:

• Home : Resetting the view configuration into the original view, i.e., viewing traces
for all times and processes.

• Horiontal zoom in / out : Zooming in/out the time dimension of the traces.

• Vertical zoom in / out : Zooming in/out the process dimension of the traces.

• Navigation buttons , , , : Navigating the trace view to the left, right, up
and bottom, respectively. It is also possible to navigate with the arrow keys in the
keyboard. Since Main View does not support scrool bars, the only way to navigate is
through navigation buttons (or arrow keys).

• Undo : Canceling the action of zoom or navigation and returning back to the
previous view configuration.

• Redo : Redoing of previously undo change of view configuration.

• Save / Open a view configuration : Saving/loading a saved view configura-
tion. A view configuration file contains the information about the process/thread and
time ranges shown, the selected depth, and the position of the crosshair. It is recom-
mended to store the view configuration file in the same directory as the database to
ensure that the view configuration file matches the database since a configuration does
not store its associated database. Although it is possible to open a view configuration
file associated with a different database, it is not recommended since each database
has different time/process dimensions and depth.

At the top of an execution’s Main View pane is some information about the data shown
in the pane.

• Time Range. The time interval shown along the horizontal dimension.

• Cross Hair. The crosshair indicates the current cursor position in the time and
execution-context dimensions.

10.9.2 Depth View

Depth View shows all the call path for a certain time range [t1, t2] = {t|t1 ≤ t ≤ t2}
in a specified process rank p. The content of Depth View is always consistent with the
position of the crosshair in Main View. For instance once the user clicks in process p and
time t, while the current depth of call path is d, then the Depth View’s content is updated

96

to display all the call path of process p and shows its crosshair on the time t and the call
path depth d.

On the other hand, any user action such as crosshair and time range selection in Depth
View will update the content within Main View. Similarly, the selection of new call path
depth in Call Stack View invokes a new position in Depth View.

In Depth View a user can specify a new crosshair time and a new time range.

Specifying a new crosshair time. Selecting a new crosshair time t can be performed
by clicking a pixel within Depth View. This will update the crosshair in Main View and
the call path in Call Stack View.

Selecting a new time range. Selecting a new time range [tm, tn] = {t|tm ≤ t ≤ tn}
is performed by first clicking the position of tm and drag the cursor to the position of tn.
A new content in Depth View and Main View is then updated. Note that this action will
not update the call path in Call Stack View since it does not change the position of the
crosshair.

10.9.3 Summary View

Summary View presents the proportion of number of calls of time t across the current
displayed rank of process p. Similar to Depth View, the time range in Summary View is
always consistent with the time range in Main View.

10.9.4 Call Stack View

This view lists the call path of process p and time t specified in Main View and Depth
View. Figure 10.13 shows a call path of the current cross hair, and the current depth is 10
as shown in the depth editor (located on the top part of the view).

In this view, the user can select the depth dimension of Main View by either typing the
depth in the depth editor or selecting a procedure in the table of call path.

10.9.5 Mini Map View

The Mini Map View shows, relative to the process/time dimensions, the portion of
the execution shown by the Main View. In Mini Map View, the user can select a new
process/time (pa, ta), (pb, tb) dimensions by clicking the first process/time position (pa, ta)
and then drag the cursor to the second position (pb, tb). The user can also moving the
current selected region to another region by clicking the white rectangle and drag it to the
new place.

Trace view also provides a context menu to save the current image of the view. This
context menu is available is three views: trace view, depth view and summary view.

10.10 Menus

hpcviewer provides four main menus:

97

10.10.1 File

This menu includes several menu items for controlling basic viewer operations.

• New window Open a new hpcviewer window that is independent from the existing
one. However, filtering CCT node operation (Section 10.7) will affect all hpcviewer
windows.

• Open database Open a database without replacing the existing one. This menu can
be used to compare two databases. Currently hpcviewer restricts maximum of two
database open at a time.

• Switch database Load a performance database into the current hpcviewer window
replacing the existing opened databases.

• Close database Unloading an open database.

• Merge databases Merging two database that are currently in the viewer. At the
moment hpcviewer doesn’t support storing a merged database into a file.

– Top-down tree Merging the top-down tree of the databases.

– Flat tree Merging the flat (static) tree of the databases.

• Preferences Display the settings dialog box which consists of three sections:

– General Enable/disable debug mode.

– Appearance Change the fonts for tree and metric columns and source viewer.

– Traces Specify settings for Trace view such as the rendering option, the number
of working threads to be used and the tooltip’s delay.

• Exit Quit the hpcviewer application.

10.10.2 Filter

This menu only contains one submenu:

• Filter CCT nodes Open a filter property window which lists a set of filters and its
properties (Section 10.7).

• Filter execution contexts (Trace view only) Open a window for selecting which
nodes will be hidden in the tree. Currently filtering CCT nodes only affect the Profile
view, and doesn’t affect the Trace view.

10.10.3 View

This menu is only visible if at least one database is loaded. All actions in this menu are
intended primarily for tool developer use. By default, the menu is hidden. Once you open
a database, the menu is then shown.

98

Figure 10.15: Procedure-color mapping dialog box. This window shows that any proce-
dure names that match with ”MPI*” pattern are assigned with red, while procedures that
match with ”PMPI*” pattern are assigned with color black.

• Show metrics (Profile view only) Display a list of (metric name, metric name descrip-
tion) pairs in a window. For GPU metrics, the descriptions are useful for explaining
what the short and somewhat cryptic metric names mean. From this window, you
can use the edit button to modify the name of the selected metric. When editing a
derived metric, the metric editor will allow you to modify the formula for the metric
in addition to the name. Once you modify a metric and exit this window by selecting
the OK button, the metric pane will refresh the display of any metrics whose name
or formula was modified.

• Show color mapping (Trace view only) Open a window which shows customized
mapping between a procedure pattern and a color (Figure 10.15). Trace view allows
users to customize assignment of a pattern of procedure names with a specific color.

• Debug (if the debug mode is enabled)

– Show database raw’s XML Enable one to request display of HPCToolkit’s
raw XML representation for performance data.

10.10.4 Help

This menu displays information about the viewer. The menu contains only one menu
item:

• About. Displays brief information about the viewer, including JVM and Eclipse
variables, and error log files.

99

10.11 Limitations

Some important hpcviewer limitations are listed below:

• Limited number of metric columns. With a large number of metric columns,
hpcviewer’s response time may become sluggish as this requires a large amount of
memory.

• Experimental Windows 11 platform. The Windows version of hpcviewer is
mainly tested on Windows 10. Support for Windows 11 is still experimental.

• Dark theme on Linux platforms. We received reports that hpcviewer is not very
visible on Linux with dark theme. Support for dark theme on Linux is still an ongoing
work.

• Linux TWM window manager is not supported. Reason: this window manager
is too ancient.

100

Chapter 11

Known Issues

This section lists some known issues and potential workarounds. Other known issues
can be seen in the project’s Gitlab issues pages:

• For HPCToolkit in general, see https://gitlab.com/HPCToolkit/HPCToolkit/

issues

• For hpcviewer, see https://gitlab.com/HPCToolkit/HPCViewer/issues

11.1 Inaccurate attribution of performance information can
occur on Sapphire Rapids processors with HPCToolkit

Description: HPCToolkit depends upon the Dyninst binary analysis framework. Prior to
Dyninst version 13.0, Dyninst stops its binary analysis of functions whenever it sees an a bit
pattern that it doesn’t recognize as a machine instruction. Unfortunately, Dyninst currently
lacks support for decoding the AMX (advanced matrix extension) instructions supported
by Sapphire Rapids. Prior to version 13.0, Dyninst will stop analysis of machine code in
a function if it encounters an AMX instruction. This shortcoming in Dyninst can cause
hpcstruct to fail to fully recover program structure for functions, leading to inaccurate
attribution of program performance by HPCToolkit.

Workaround: Building HPCToolkit atop Dyninst 13.0 resolves the issue.

11.2 We observed bad generated code for Dyninst using gcc
11.2.0 on Aurora

Description: On the Aurora supercomputer, we observed that hpcstruct crashed with
a segmentation fault when it and its Dyninst dependence were compiled with gcc 11.2.0.
Debugging showed that when a class in Dyninst called a function implemented by its base
class, the wrong this pointer value was passed to the function, causing a segmentation
fault.

101

https://gitlab.com/HPCToolkit/HPCToolkit/issues
https://gitlab.com/HPCToolkit/HPCToolkit/issues
https://gitlab.com/HPCToolkit/HPCViewer/issues

Workaround: Recompiling HPCToolkit and Dyninst with gcc 12.2.0 eliminated the prob-
lem.

11.3 When monitoring applications that use ROCm 6.0.0,
using LD AUDIT in hpcrun may cause it to fail to elide
OpenMP runtime frames

Description: When an application provides a runtime that supports the OpenMP tools
API known as OMPT, normally in the OpenMP runtime frames between user code on
call stacks are elided. However, have observed that when using Glibc’s LD_AUDIT as part
of HPCToolkit’s measurement infrastructure and using Rocm 6.0.0, an application’s TLS
storage may be reinitialized during HPCToolkit’s initialization; this clears some important
HPCToolkit state information from thread local variables. As a result, the primary thread
is not recognized as an OpenMP thread, which is necessary to elide runtime frames.

The root cause of the problem is a bug in Glibc’s LD_AUDIT. This is believed to affect all
versions of Glibc. However, we have only observed this problem when using ROCm 6.0.0.

Workaround: Use the --disable-auditor option to hpcrun.

11.4 When using Intel GPUs, hpcrun may report that sub-
stantial time is spent in a partial call path consisting of
only an unknown procedure

Description: Binary instrumentation on Intel GPUs uses Intel’s GTPin. GTPin runs
in its own private namespace. Asynchronous samples collected in response to Linux timer
or hardware counter events may often occur when GTPin is executing. With GTPin in a
private namespace, its code and symbols are invisible to hpcrun, which causes a degenerate
unwind consisting of only an unknown procedure.

Workaround: Don’t collect Linux timer or hardware counter events on the CPU when us-
ing binary instrumentation to collect instruction-level performance measurements of kernels
executing on Intel GPUs.

11.5 hpcrun reports partial call paths for code executed by a
constructor prior to entering main

Description: At present, all samples of code executed by constructors are reported as a
partial call paths even if they are full unwinds. This occurs because HPCToolkit wasn’t
designed to attribute code that executes in constructors.

Workaround: Don’t be concerned by partial call paths that unwind through
__libc_start_main and __lib_csu_init. The samples are fully attributed even though
HPCToolkit does not recognize them as such.

102

Development Plan: A future version of HPCToolkit will recognize that these unwinds
are indeed full call paths and attribute them as such.

11.6 hpcrun may fail to measure a program execution on a
CPU with hardware performance counters

Description: We observed a problem using Linux perf events to measure CPU perfor-
mance using hardware performance counters on an x86 64 cluster at Sandia. An investiga-
tion determined that the cluster was running Sandia’s LDMS (Lightweight Distributed Met-
ric Service)—a low-overhead, low-latency framework for collecting, transferring, and storing
metric data on a large distributed computer system. On this cluster, the LDMS daemon
had been configured to use the syspapi sampler (https://github.com/ovis-hpc/ovis/
blob/OVIS-4/ldms/src/sampler/syspapi/syspapi_sampler.c), which uses the Linux
perf events subsystem to measure hardware counters at the node level. At present, the
LDMS syspapi sampler’s use of the Linux perf events subsystem for data collection at
the node level conflicts with native use of use the Linux perf events subsystem by HPC-
Toolkit for process-level measurement.1

Workaround: Surprisingly, measurement using HPCToolkit’s PAPI interface atop Linux
perf events works even though using HPCToolkit directly atop Linux perf events

yields no measurement data. For instance, rather than measuring cycles using Linux
perf events directly with -e cycles, one can measure cycles through HPCToolkit’s PAPI
measurement subsystem using -e PAPI TOT CYC. Of course, one can configure PAPI to
measure other hardware events, such as graduated instructions and cache misses.

Development Plan: Identify why the use of the Linux perf events subsystem by the
LDMS syspapi sampler conflicts with the use of the direct use of Linux perf events

HPCToolkit and the Linux perf tool but not with the use of Linux perf events by PAPI.

11.7 hpcrun may associate several profiles and traces with
rank 0, thread 0

Description: On Cray systems, we have observed that hpcrun associates several profiles
and traces with rank 0, thread 0. This results from the fact that the Cray PMI daemon gets
forked from the application in a constructor and there is no exec. Initially, each process
gets tagged with rank 0, thread 0 until the real rank and thread is determined later in the
execution. That determination never happens for the PMI daemon.

Workaround: In our experience, the hpcrun files in the measurement for the daemon
tagged with rank 0 thread 0 are very small. In experiments we ran, they were about 2K.
You can remove these profiles and their matching trace files before processing a measurement

1We observed the same conflict between the LDMS syspapi sampler and the Linux perf command-
line tool. We expect that the syspapi sampler conflicts with other process-level tools that use the Linux
perf events subsystem to measure events using hardware counters.

103

https://github.com/ovis-hpc/ovis/blob/OVIS-4/ldms/src/sampler/syspapi/syspapi_sampler.c
https://github.com/ovis-hpc/ovis/blob/OVIS-4/ldms/src/sampler/syspapi/syspapi_sampler.c

database with hpcprof. The correspondence between a profile and trace can be determined
because they only differ in their suffix (hpcrun or hpctrace).

11.8 hpcrun sometimes enables writing of read-only data

If an application or shared library contains a PT_GNU_RELRO segment in its program
header, the runtime loader ld.so will mark all data in that segment readonly after relo-
cations have been processed at runtime. As described in Section 5.1.1 of the manual, on
x86_64 and Power architectures, hpcrun uses LD_AUDIT to monitor operations on dynamic
libraries. For hpcrun to properly resolve calls to functions in shared libraries, the Global
Offset Table (GOT) must be writable. Sometimes, the GOT lies within the PT_GNU_RELRO
segment, which may cause it to be marked readonly after relocations are processed. If
hpcrun is using LD_AUDIT to monitor shared library operations, it will enable write permis-
sions on the PT_GNU_RELRO segment during execution. While this makes some data writable
that should have read-only permissions, it should not affect the behavior of any program
that does not attempt to overwrite data that should have been readonly in its address space.

11.9 A confusing label for GPU theoretical occupancy

Affected architectures: NVIDIA GPUs

Description: When analyzing a GPU-accelerated application that employs NVIDIA
GPUs, HPCToolkit estimates percent GPU theoretical occupancy as the ratio of active
GPU threads divided by the maximum number of GPU threads available. In multi-threaded
or multi-rank programs, HPCToolkit reports GPU theoretical occupancy with the label

Sum over rank/thread of exclusive ’GPU kernel: theoretical occupancy
(FGP ACT / FGP MAX)’

rather than its correct label

GPU kernel: theoretical occupancy (FGP ACT / FGP MAX)

The metric is computed correctly by summing the fine-grain parallelism used in each
kernel launch across all threads and ranks and dividing it by the sum of the maximum fine-
grain parallelism available to each kernel launch across all threads and ranks, and presenting
the value as a percent.

Explanation: This metric is unlike others computed by HPCToolkit. Rather than being
computed by hpcprof, it is computed by having hpcviewer interpret a formula.

Workaround: Pay attention to the metric value, which is computed correctly and ignore
its awkward label.

Development Plan: Add additional support to hpcrun and hpcprof to understand how
derived metrics are computed and avoid spoiling their labels.

104

11.10 Deadlock when using Darshan

Affected architectures: x86_64 and ARM

Description: Darshan is a library for monitoring POSIX I/O. When using asynchronous
sampling on the CPU to monitor a program that is being monitored with Darshan, your
program may deadlock.

Explanation: Darshan hijacks calls to open. HPCToolkit uses the libunwind library.
Under certain circumstances, libunwind uses open to inspect an application’s executable
or one of the shared libraries it uses to look for unwinding information recorded by the
compiler. The following sequence of actions leads to a problem:

1. A user application calls malloc and acquires a mutex lock on an allocator data struc-
ture.

2. HPCToolkit’s signal handler is invoked to record an asynchronous sample.

3. libunwind is invoked to obtain the calling context for the sample.

4. libunwind calls open to look for compiler-based unwind information.

5. A Darshan wrapper for open executes in HPCToolkit’s signal handler.

6. The Darshan wrapper for open may try to allocate data to record statistics for the ap-
plication’s calls to open, deadlocking because a non-reentrant allocator lock is already
held by this thread.

Workaround: Unload the Darshan module before compiling a statically-linked applica-
tion or running a dynamically-linked application.

Development Plan: Ensure that libunwind’s calls to open are never intercepted by
Darshan.

105

106

Chapter 12

FAQ and Troubleshooting

To measure an application’s performance with HPCToolkit, one must add HPC-
Toolkit’s measurement subsystem to an application’s address space.

• For a statically-linked binary, one adds HPCToolkit’s measurement subsystem di-
rectly into the binary by prefixing your link command with HPCToolkit’s hpclink
command.

• For a dynamically-linked binary, launching your application with HPCToolkit’s
hpcrun command pre-loads HPCToolkit’s measurement subsystem into your appli-
cation’s address space before the application begins to execute.

In this chapter, for convenience, we refer to HPCToolkit’s measurement system simply
as hpcrun since the measurement subsystem is most commonly used with dynamically-
linked binaries. From the context, it should be clear enough whether we are talking about
HPCToolkit’s measurement subsystem or the hpcrun command itself.

12.1 Instrumenting Statically-linked Applications

Using hpclink with cmake

When creating a statically-linked executable with cmake, it is not obvious how to add
hpclink as a prefix to a link command. Unless it is overridden somewhere along the way,
the following rule found in Modules/CMakeCXXInformation.cmake is used to create the link
command line for a C++ executable:

if(NOT CMAKE_CXX_LINK_EXECUTABLE)

set(CMAKE_CXX_LINK_EXECUTABLE

"<CMAKE_CXX_COMPILER> <FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS>

<OBJECTS> -o <TARGET> <LINK_LIBRARIES>")

endif()

As the rule shows, by default, the C++ compiler is used to link C++ executables. One way
to change this is to override the definition for CMAKE_CXX_LINK_EXECUTABLE on the cmake

command line so that it includes the necessary hpclink prefix, as shown below:

107

cmake srcdir ... \

-DCMAKE_CXX_LINK_EXECUTABLE="hpclink <CMAKE_CXX_COMPILER> \

<FLAGS> <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <OBJECTS> -o <TARGET> \

<LINK_LIBRARIES>" ...

If your project has executables linked with a C or Fortran compiler, you will need analogous
redefinitions for CMAKE_C_LINK_EXECUTABLE or CMAKE_Fortran_LINK_EXECUTABLE as well.

Rather than adding the redefinitions of these linker rules to the cmake command line,
you may find it more convenient to add definitions of these rules to your CMakeLists.cmake
file.

12.2 General Measurement Failures

12.2.1 Unable to find HPCTOOLKIT root directory

On some systems, you might see a message like this:

/path/to/copy/of/hpcrun: Unable to find HPCTOOLKIT root directory.

Please set HPCTOOLKIT to the install prefix, either in this script,

or in your environment, and try again.

The problem is that the system job launcher copies the hpcrun script from its install
directory to a launch directory and runs it from there. When the system launcher moves
hpcrun to a different directory, this breaks hpcrun’s method for finding its own install
directory. The solution is to add HPCTOOLKIT to your environment so that hpcrun can find
its install directory. See section 5.7 for general notes on environment variables for hpcrun.
Also, see section 5.8, as this problem occurs on Cray XE and XK systems.

Note: Your system may have a module installed for hpctoolkit with the correct settings
for PATH, HPCTOOLKIT, etc. In that case, the easiest solution is to load the hpctoolkit mod-
ule. If there is such a module, Try “module show hpctoolkit” to see if it sets HPCTOOLKIT.

12.2.2 Profiling setuid programs

hpcrun uses preloaded shared libraries to initiate profiling. For this reason, it cannot
be used to profile setuid programs.

12.2.3 Problems loading dynamic libraries

By default, hpcrun uses Glibc’s LD AUDIT subsystem to monitor an application’s use
of dynamic libraries. Use of LD AUDIT is needed to properly track loaded libraries when a
RUNPATH is set in the application or libraries. Due to known bugs in Glibc’s implementation,
this may cause the application to crash unexpectedly. See Section 5.1.1 for details on the
issues present and how to avoid them.

12.2.4 Problems caused by gprof instrumentation

When an application has been compiled with the compiler flag -pg, the compiler adds
instrumentation to collect performance measurement data for the gprof profiler. Measuring

108

application performance with HPCToolkit’s measurement subsystem and gprof instru-
mentation active in the same execution may cause the execution to abort. One can detect the
presence of gprof instrumentation in an application by the presence of the __monstartup

and _mcleanup symbols in a executable. You can recompile your code without the -pg

compiler flag and measure again. Alternatively, you can use the --disable-gprof argu-
ment to hpcrun or hpclink to disable gprof instrumentation while measuring performance
with HPCToolkit.

To cope with gprof instrumentation in dynamically-linked programs, you can use
hpcrun’s --disable-gprof option.

12.3 Measurement Failures using NVIDIA GPUs

12.3.1 Deadlock while monitoring a program that uses IBM Spectrum
MPI and NVIDIA GPUs

IBM’s Spectrum MPI uses a special library libpami cudahook.so to intercept alloca-
tions of GPU memory so that Spectrum MPI knows when data is allocated on an NVIDIA
GPU. Unfortunately, the mechanism used by Spectrum MPI to do so (wrapping dlsym)
interferes with performance tools that use dlopen and dlsym. This interference causes
measurement of a GPU-accelerated MPI application using HPCToolkit to deadlock when
an application uses both Spectrum MPI and and CUDA on an NVIDIA GPU.

To avoid this deadlock on systems when launching a program that uses Spectrum
MPI with jsrun, use --smpiargs="-x PAMI DISABLE CUDA HOOK=1 -disable gpu hooks"

to disable the PAMI CUDA hook library. These flags cannot be used with the -gpu flag.

Note however that disabling Spectrum MPI’s CUDA hook will cause trouble if CUDA
device memory is passed into the MPI library as a send or receive buffer. An additional
restriction is that memory obtained with a call to cudaMallocHost may not be passed
as a send or receive buffer. Functionally similar memory may be obtained with any host
allocation function followed by a call the cudaHostRegister.

12.3.2 Ensuring permission to use GPU performance counters

Your Administrator or a recent NVIDIA driver installation may have disabled access
to GPU Performance due to Security Notice: NVIDIA Response to “Rendered Insecure:
GPU Side Channel Attacks are Practical” https://nvidia.custhelp.com/app/answers/

detail/a_id/4738 - November 2018. If that is the case, HPCToolkit cannot access NVIDIA
GPU performance counters when using a Linux 418.43 or later driver. This may cause an
error message when you try to use PC sampling on an NVIDIA GPU.

A good way to check whether GPU performance counters are available to non-root users
on Linux is to execute the following commands:

1. cd /etc/modprobe.d

2. grep NVreg_RestrictProfilingToAdminUsers *

Generally, if non-root user access to GPU performance counters is enabled, the grep com-
mand above should yield a line that contains NVreg RestrictProfilingToAdminUsers=0.

109

https://nvidia.custhelp.com/app/answers/detail/a_id/4738
https://nvidia.custhelp.com/app/answers/detail/a_id/4738

Note: if you are on a cluster, access to GPU performance counters may be disabled on a
login node, but enabled on a compute node. You should run an interactive job on a compute
node and perform the checks there.

If access to GPU hardware performance counters is not enabled, one option you have
is to use hpcrun without PC sampling, i.e., with the -e gpu=nvidia option instead of -e
gpu=nvidia,pc.

If PC sampling is a must, you have two options:

1. Run the tool or application being profiled with administrative privileges. On Linux,
launch HPCToolkit with sudo or as a user with the CAP SYS ADMIN capability set.

2. Have a system administrator enable access to the NVIDIA performance counters using
the instructions on the following web page: https://developer.nvidia.com/ERR_

NVGPUCTRPERM.

12.3.3 Avoiding the error cudaErrorUnknown

When monitoring a CUDA application with REALTIME or CPUTIME, you may encounter
a cudaErrorUnknown return from many or all CUDA calls in the application. 1 This
error may occur non-deterministically, we have observed that this error occurs regularly at
very fast periods such as REALTIME@100. If this occurs, we recommend using CYCLES as a
working alternative similar to CPUTIME, see Section 12.4.1 for more detail on HPCToolkit’s
perfevents support.

12.3.4 Avoiding the error CUPTI ERROR NOT INITIALIZED

hpcrun uses NVIDIA’s CUDA Performance Tools Interface known as CUPTI to
monitor computations on NVIDIA GPUs. In our experience, this error occurs when
the version of CUPTI used by HPCToolkit is incompatible with the version of CUDA
used by your program or CUDA kernel driver installed on your system. You can
check the version of the CUDA kernel driver installed on your system using the
nvidia-smi command. Table 3 CUDA Application Compatibility Support Matrix
at the following URL https://docs.nvidia.com/deploy/cuda-compatibility/index.

html#cuda-application-compatibility specifies what versions of the CUDA kernel
driver match each version of CUDA and CUPTI. Although the table indicates that some
drivers can support newer versions of CUDA than the one that they were designed for,
e.g. driver 418.40.04+ designed to support CUDA 10.1 can also run CUDA 11.0 and 11.1
programs, in our experience that does not necessarily mean that the driver will support
performance measurement of CUDA programs using any CUDA version newer than 10.1.
We believe that best way to avoid the CUPTI ERROR NOT INITIALIZED error is to ensure that
(1) HPCToolkit is compiled with the version of CUDA that your installed CUDA kernel
driver was designed to support, and (2) your application uses the version of CUDA that
matches the one your kernel driver was designed to support or a compatible older version.

1We have observed this error on ORNL’s Summit machine, running Red Hat Enterprise Linux 8.2.

110

https://developer.nvidia.com/ERR_NVGPUCTRPERM
https://developer.nvidia.com/ERR_NVGPUCTRPERM
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#cuda-application-compatibility
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#cuda-application-compatibility

12.3.5 Avoiding the error CUPTI ERROR HARDWARE BUSY

When trying to use PC sampling to measure computation on an NVIDIA GPU, you
may encounter the following error: ‘function cuptiActivityConfigurePCSampling failed
with error CUPTI ERROR HARDWARE BUSY’.

For all versions of CUDA to date (through CUDA 11), NVIDIA’s CUPTI library only
supports PC sampling for only one process per GPU. If multiple MPI ranks in your appli-
cation run CUDA on the same GPU, you may see this error.2

You have two alternatives:

1. Measure the execution in which multiple MPI ranks share a GPU using only -e

gpu=nvidia without PC sampling.

2. Launch your program so that there is only a single MPI rank per GPU.

(a) jsrun advice: if using -g1 for a resource set, don’t use anything other than -a1.

12.3.6 Avoiding the error CUPTI ERROR UNKNOWN

When trying to use PC sampling to measure computation on an NVIDIA GPU, you
may encounter the following error: ‘function cuptiActivityEnableContext failed with
error CUPTI ERROR UNKNOWN’.

For all versions of CUDA to date (through CUDA 11), NVIDIA’s CUPTI library only
supports PC sampling for only one process per GPU. If multiple MPI ranks in your appli-
cation run CUDA on the same GPU, you may see this error.3 You have two alternatives:

1. Measure the execution in which multiple MPI ranks share a GPU using only -e

gpu=nvidia without PC sampling.

2. Launch your program so that there is only a single MPI rank per GPU.

(a) jsrun advice: if using -g1 for a resource set, don’t use anything other than -a1.

12.4 General Measurement Issues

12.4.1 How do I choose sampling periods?

When using sample sources for hardware counter and software counter events provided
by Linux perf_events, we recommend that you use frequency-based sampling. The default
frequency is 300 samples/second.

Statisticians use samples sizes of approximately 3500 to make accurate projections about
the voting preferences of millions of people. In an analogous way, rather than measuring and
attributing every action of a program or every runtime event (e.g., a cache miss), sampling-
based performance measurement collects “just enough” representative performance data.
You can control hpcrun’s sampling periods to collect “just enough” representative data
even for very long executions and, to a lesser degree, for very short executions.

2We have observed this error on CUDA 11.
3We have observed this error on CUDA 10.

111

For reasonable accuracy (±5%), there should be at least 20 samples in each context
that is important with respect to performance. Since unimportant contexts are irrelevant to
performance, as long as this condition is met (and as long as samples are not correlated, etc.),
HPCToolkit’s performance data should be accurate enough to guide program tuning.

We typically recommend targeting a frequency of hundreds of samples per second. For
very short runs, you may need to collect thousands of samples per second to record an
adequate number of samples. For long runs, tens of samples per second may suffice for
performance diagnosis.

Choosing sampling periods for some events, such as Linux timers, cycles and instruc-
tions, is easy given a target sampling frequency. Choosing sampling periods for other
events such as cache misses is harder. In principle, an architectural expert can easily derive
reasonable sampling periods by working backwards from (a) a maximum target sampling
frequency and (b) hardware resource saturation points. In practice, this may require some
experimentation.

See also the hpcrun man page.

12.4.2 Why do I see partial unwinds?

Under certain circumstances, HPCToolkit can’t fully unwind the call stack to determine
the full calling context where a sample event occurred. Most often, this occurs when hpcrun

tries to unwind through functions in a shared library or executable that has not been
compiled with -g as one of its options. The -g compiler flag can be used in addition to
optimization flags. On Power and x86_64 processors, hpcrun can often compensate for the
lack of unwind recipes by using binary analysis to compute recipes itself. However, since
hpcrun lacks binary analysis capabilities for ARM processors, there is a higher likelihood
that the lack of a -g compiler option for an executable or a shared library will lead to partial
unwinds.

One annoying place where partial unwinds are somewhat common on x86_64 processors
is in Intel’s MKL family of libraries. A careful examination of Intel’s MKL libraries showed
that most but not all routines have compiler-generated Frame Descriptor Entries (FDEs)
that help tools unwind the call stack. For any routine that lacks an FDE, HPCToolkit tries
to compensate using binary analysis. Unfortunately, highly-optimized code in MKL library
routines has code features that are difficult to analyze correctly.

There are two ways to deal with this problem:

• Analyze the execution using information from partial unwinds. Often knowing several
levels of calling context is enough for analysis without full calling context for sample
events.

• Recompile the binary or shared library causing the problem and add -g to the list of
its compiler options.

12.4.3 Measurement with HPCToolkit has high overhead! Why?

For reasonable sampling periods, we expect hpcrun’s overhead percentage to be in the
low single digits, e.g., less than 5%. The most common causes for unusually high overhead
are the following:

112

http://hpctoolkit.org/man/hpcrun.html

• Your sampling frequency is too high. Recall that the goal is to obtain a representative
set of performance data. For this, we typically recommend targeting a frequency of
hundreds of samples per second. For very short runs, you may need to try thousands
of samples per second. For very long runs, tens of samples per second can be quite
reasonable. See also Section 12.4.1.

• hpcrun has a problem unwinding. This causes overhead in two forms. First, hpcrun
will resort to more expensive unwind heuristics and possibly have to recover from
self-generated segmentation faults. Second, when these exceptional behaviors occur,
hpcrun writes some information to a log file. In the context of a parallel application
and overloaded parallel file system, this can perturb the execution significantly. To
diagnose this, execute the following command and look for “Errant Samples”:

hpcsummary --all <hpctoolkit-measurements>

Note: The hpcsummary script is no longer included in the bin directory of an
HPCToolkit installation; it is a developer script that can be found in the
libexec/hpctoolkit directory. Let us know if you encounter significant problems
with bad unwinds.

• You have very long call paths where long is in the hundreds or thousands. On x86-
based architectures, try additionally using hpcrun’s RETCNT event. This has two
effects: It causes hpcrun to collect function return counts and to memoize common
unwind prefixes between samples.

• Currently, on very large runs the process of writing profile data can take a long
time. However, because this occurs after the application has finished executing, it is
relatively benign overhead. (We plan to address this issue in a future release.)

12.4.4 Some of my syscalls return EINTR

When profiling a threaded program, there are times when it is necessary for hpcrun to
signal another thread to take some action. When this happens, if the thread receiving the
signal is blocked in a syscall, the kernel may return EINTR from the syscall. This would
happen only in a threaded program and mainly with “slow” syscalls such as select(),
poll() or sem wait().

12.4.5 My application spends a lot of time in C library functions with
names that include mcount

If performance measurements with HPCToolkit show that your application is spend-
ing a lot of time in C library routines with names that include the string mcount (e.g.,
mcount, _mcount or __mcount_internal), your code has been compiled with the compiler
flag -pg, which adds instrumentation to collect performance measurement data for the
gprof profiler. If you are using HPCToolkit to collect performance data, the gprof in-
strumentation is needlessly slowing your application. You can recompile your code without
the -pg compiler flag and measure again. Alternatively, you can use the --disable-gprof

113

argument to hpcrun or hpclink to disable gprof instrumentation while measuring perfor-
mance with HPCToolkit.

12.5 Problems Recovering Loops in NVIDIA GPU binaries

• When using the --gpucfg yes option to analyze control flow to recover information
about loops in CUDA binaries, hpcstruct needs to use NVIDIA’s nvdisasm tool. It
is important to note that hpcstruct uses the version of nvdisasm that is on your
path. When using the --gpucfg yes option to recover loops in CUBINs, you can
improve hpcstruct’s ability to recover loops by having a newer version of nvdisasm
on your path. Specifically, the version of nvdisasm in CUDA 11.2 is much better than
nvdisasm in CUDA 10.2. It will recover loops for more procedures and faster.

• While NVIDIA has improved the capability and speed of nvdisasm in CUDA 11.2, it
may still be too slow to be usable on large CUDA binaries. Because of failures we have
encountered with nvdisasm, hpcstruct launches nvdisasm once for each procedure
in a GPU binary to maximize the information it can extract. With this approach, we
have seen hpcstruct take over 12 hours to analyze a CUBIN of roughly 800MB with
40K GPU functions. For large CUDA binaries, our advice is to skip the --gpucfg

yes option at present until we adjust hpcstruct launch multiple copies of nvdisasm
in parallel to reduce analysis time.

12.6 Graphical User Interface Issues

12.6.1 Fail to run hpcviewer: executable launcher was unable to locate
its companion shared library

Although this error mostly incurrs on Windows platform, but it can happen in other
environment. The cause of this issue is that the permission of one of Eclipse launcher
library (org.eclipse.equinox.launcher.*) is too restricted. To fix this, set the permission of
the library to 0755, and launch again the viewer.

12.6.2 Launching hpcviewer is very slow on Windows

There is a known issue that Windows Defender significantly slow down Java-based ap-
plications. See the github issue at https://github.com/microsoft/java-wdb/issues/9.

A temporary solution is to add hpcviewer in the Windows’ exclusion list:

1. Open Windows 10 settings.

2. Search for ”Virus and threat protection” and open it.

3. Now click on ”Manage settings” under ”Virus and threat protection settings” section.

4. Now click ”Add or remove exclusions” under ”Exclusions” section.

5. Now click ”Add an exclusion” then select ”Folder”

6. Point to hpcviewer directory and press ”Select Folder”

114

https://github.com/microsoft/java-wdb/issues/9

12.6.3 Mac only: hpcviewer runs on Java X instead of “Java 11”

hpcviewer has mainly been tested on Java 11. If you are running an older than Java 11
or newer than Java 17, obtain a version of Java 11 or 17 from https://adoptopenjdk.net

or https://adoptium.net/.

If your system has multiple versions of Java and Java 11 is not the newest version, you
need to set Java 11 as the default JVM. On MacOS, you need to exclude older Java as
follows:

1. Leave all JDKs at their default location (usually under
/Library/Java/JavaVirtualMachines). The system will pick the highest ver-
sion by default.

2. To exclude a JDK from being picked by default, rename Contents/Info.plist file to
other name like Info.plist.disabled. That JDK can still be used when $JAVA HOME

points to it, or explicitly referenced in a script or configuration. It will simply be
ignored by your Mac’s java command.

12.6.4 When executing hpcviewer, it complains cannot create “Java Vir-
tual Machine”

If you encounter this problem, we recommend that you edit the hpcviewer.ini file
which is located in HPCToolkit installation directory to reduce the Java heap size. By
default, the content of the file on Linux x86 is as follows:

-startup

plugins/org.eclipse.equinox.launcher_1.6.200.v20210416-2027.jar

--launcher.library

plugins/org.eclipse.equinox.launcher.gtk.linux.x86_64_1.2.200.v20210429-1609

-clearPersistedState

-vmargs

-Xmx2048m

-Dosgi.locking=none

You can decrease the maximum size of the Java heap from 2048MB to 1GB by changing
the Xmx specification in the hpcviewer.ini file as follows:

-Xmx1024m

12.6.5 hpcviewer fails to launch due to java.lang.NoSuchMethodError ex-
ception.

The root cause of the error is due to a mix of old and new hpcviewer binaries.
To solve this problem, you need to remove your hpcviewer workspace (usually in your
$HOME/.hpctoolkit/hpcviewer directory), and run hpcviewer again.

115

https://adoptopenjdk.net
https://adoptium.net/

12.6.6 hpcviewer fails due to java.lang.OutOfMemoryError exception.

If you see this error, the memory footprint that hpcviewer needs to store and the metrics
for your measured program execution exceeds the maximum size for the Java heap specified
at program launch. On Linux, hpcviewer accepts a command-line option --java-heap

that enables you to specify a larger non-default value for the maximum size of the Java
heap. Run hpcviewer --help for the details of how to use this option.

12.6.7 hpcviewer writes a long list of Java error messages to the terminal!

The Eclipse Java framework that serves as the foundation for hpcviewer can be some-
what temperamental. If the persistent state maintained by Eclipse for hpcviewer gets
corrupted, hpcviewer may spew a list of errors deep within call chains of the Eclipse frame-
work.

On MacOS and Linux, try removing your hpcviewer Eclipse workspace with default
location:
$HOME/.hpctoolkit/hpcviewer
and run hpcviewer again.

12.6.8 hpcviewer attributes performance information only to functions
and not to source code loops and lines! Why?

Most likely, your application’s binary either lacks debugging information or is stripped.
A binary’s (optional) debugging information includes a line map that is used by profilers
and debuggers to map object code to source code. HPCToolkit can profile binaries
without debugging information, but without such debugging information it can only map
performance information (at best) to functions instead of source code loops and lines.

For this reason, we recommend that you always compile your production applications
with optimization and with debugging information. The options for doing this vary by
compiler. We suggest the following options:

• GNU compilers (gcc, g++, gfortran): -g

• IBM compilers (xlc, xlf, xlC): -g

• Intel compilers (icc, icpc, ifort): -g -debug inline debug info

• PGI compilers (pgcc, pgCC, pgf95): -gopt.

We generally recommend adding optimization options after debugging options — e.g., ‘-g
-O2’ — to minimize any potential effects of adding debugging information.4 Also, be careful
not to strip the binary as that would remove the debugging information. (Adding debugging
information to a binary does not make a program run slower; likewise, stripping a binary
does not make a program run faster.)

4In general, debugging information is compatible with compiler optimization. However, in a few cases,
compiling with debugging information will disable some optimization. We recommend placing optimization
options after debugging options because compilers usually resolve option incompatibilities in favor of the
last option.

116

Please note that at high optimization levels, a compiler may make significant program
transformations that do not cleanly map to line numbers in the original source code. Even
so, the performance attribution is usually very informative.

12.6.9 hpcviewer hangs trying to open a large database! Why?

The most likely problem is that the Java virtual machine is low on memory and thrash-
ing. The memory footprint that hpcviewer needs to store and the metrics for your measured
program execution is likely near the maximum size for the Java heap specified at program
launch.

On Linux, hpcviewer accepts a command-line option --java-heap that enables you
to specify a larger non-default value for the maximum size of the Java heap. Run
hpcviewer --help for the details of how to use this option.

12.6.10 hpcviewer runs glacially slowly! Why?

There are three likely reasons why hpcviewer might run slowly. First, you may be
running hpcviewer on a remote system with low bandwidth, high latency or an otherwise
unsatisfactory network connection to your desktop. If any of these conditions are true,
hpcviewer’s otherwise snappy GUI can become sluggish if not downright unresponsive.
The solution is to install hpcviewer on your local system, copy the database onto your
local system, and run hpcviewer locally. We almost always run hpcviewer on our local
desktops or laptops for this reason.

Second, the HPCToolkit database may be very large, which can cause the Java vir-
tual machine to run short on memory and thrash. The memory footprint that hpcviewer
needs to store and the metrics for your measured program execution is likely near the max-
imum size for the Java heap specified at program launch. On Linux, hpcviewer accepts a
command-line option --java-heap that enables you to specify a larger non-default value
for the maximum size of the Java heap. Run hpcviewer --help for the details of how to
use this option.

12.6.11 hpcviewer does not show my source code! Why?

Assuming you compiled your application with debugging information (see Issue 12.6.8),
the most common reason that hpcviewer does not show source code is that hpcprof/mpi
could not find it and therefore could not copy it into the HPCToolkit performance
database.

Follow ‘best practices’ When running hpcprof/mpi, we recommend using an
-I/--include option to specify a search directory for each distinct top-level source di-
rectory (or build directory, if it is separate from the source directory). Assume the paths to
your top-level source directories are <dir1> through <dirN>. Then, pass the the following
options to hpcprof/mpi:

-I <dir1>/+ -I <dir2>/+ ... -I <dirN>/+

117

These options instruct hpcprof/mpi to search for source files that live within any of the
source directories <dir1> through <dirN>. Each directory argument can be either absolute
or relative to the current working directory.

It will be instructive to unpack the rationale behind this recommendation. hpcprof/mpi
obtains source file names from your application binary’s debugging information. These
source file paths may be either absolute or relative. Without any -I/--include options,
hpcprof/mpi can find source files that either (1) have absolute paths (and that still exist on
the file system) or (2) are relative to the current working directory. However, because the
nature of these paths depends on your compiler and the way you built your application, it
is not wise to depend on either of these default path resolution techniques. For this reason,
we always recommend supplying at least one -I/--include option.

There are two basic forms in which the search directory can be specified: non-recursive
and recursive. In most cases, the most useful form is the recursive search directory, which
means that the directory should be searched along with all of its descendants. A non-
recursive search directory dir is simply specified as dir. A recursive search directory dir is
specified as the base search directory followed by the special suffix ‘/+’: dir/+. The paths
above use the recursive form.

An explanation how HPCToolkit finds source files hpcprof/mpi obtains source
file names from your application binary’s debugging information. If debugging information
is unavailable, such as is often the case for system or math libraries, then source files are
unknown.

Two things immediately follow from this. First, in most normal situations, there will
always be some functions for which source code cannot be found, such as those within
system libraries.5 Second, to ensure that hpcprof/mpi has file names for which to search,
make sure as much of your application as possible (including libraries) contains debugging
information.

If debugging information is available, source files can come in two forms: absolute and
relative. hpcprof/mpi can find source files under the following conditions:

• If a source file path is absolute and the source file can be found on the file system,
then hpcprof/mpi will find it.

• If a source file path is relative, hpcprof/mpi can only find it if the source file can be
found from the current working directory or within a search directory (specified with
the -I/--include option).

• Finally, if a source file path is absolute and cannot be found by its absolute path,
hpcprof/mpi uses a special search mode. Let the source file path be p/f . If the
path’s base file name f is found within a search directory, then that is considered a
match. This special search mode accommodates common complexities such as: (1)
source file paths that are relative not to your source code tree but to the directory
where the source was compiled; (2) source file paths to source code that is later moved;
and (3) source file paths that are relative to file system that is no longer mounted.

5Having a system administrator download the associated devel package for a library can enable visibility
into the source code of system libraries.

118

Note that given a source file path p/f (where p may be relative or absolute), it may be the
case that there are multiple instances of a file’s base name f within one search directory,
e.g., p1/f through pn/f , where pi refers to the ith path to f . Similarly, with multiple search-
directory arguments, f may exist within more than one search directory. If this is the case,
the source file p/f is resolved to the first instance p′/f such that p′ best corresponds to p,
where instances are ordered by the order of search directories on the command line.

For any functions whose source code is not found (such as functions within system
libraries), hpcviewer will generate a synopsis that shows the presence of the function and
its line extents (if known).

12.6.12 hpcviewer’s reported line numbers do not exactly correspond to
what I see in my source code! Why?

To use a cliché, “garbage in, garbage out”. HPCToolkit depends on information
recorded in the symbol table by the compiler. Line numbers for procedures and loops
are inferred by looking at the symbol table information recorded for machine instructions
identified as being inside the procedure or loop.

For procedures, often no machine instructions are associated with a procedure’s decla-
rations. Thus, the first line in the procedure that has an associated machine instruction is
the first line of executable code.

Inlined functions may occasionally lead to confusing data for a procedure. Machine
instructions mapped to source lines from the inlined function appear in the context of other
functions. While hpcprof’s methods for handling incline functions are good, some codes
can confuse the system.

For loops, the process of identifying what source lines are in a loop is similar to the
procedure process: what source lines map to machine instructions inside a loop defined by
a backward branch to a loop head. Sometimes compilers do not properly record the line
number mapping.

12.6.13 hpcviewer claims that there are several calls to a function within
a particular source code scope, but my source code only has one!
Why?

In the course of code optimization, compilers often replicate code blocks. For instance,
as it generates code, a compiler may peel iterations from a loop or split the iteration space of
a loop into two or more loops. In such cases, one call in the source code may be transformed
into multiple distinct calls that reside at different code addresses in the executable.

When analyzing applications at the binary level, it is difficult to determine whether two
distinct calls to the same function that appear in the machine code were derived from the
same call in the source code. Even if both calls map to the same source line, it may be
wrong to coalesce them; the source code might contain multiple calls to the same function on
the same line. By design, HPCToolkit does not attempt to coalesce distinct calls to the
same function because it might be incorrect to do so; instead, it independently reports each
call site that appears in the machine code. If the compiler duplicated calls as it replicated
code during optimization, multiple call sites may be reported by hpcviewer when only one
appeared in the source code.

119

12.6.14 Trace view shows lots of white space on the left. Why?

At startup, Trace view renders traces for the time interval between the minimum and
maximum times recorded for any process or thread in the execution. The minimum time for
each process or thread is recorded when its trace file is opened as HPCToolkit’s monitoring
facilities are initialized at the beginning of its execution. The maximum time for a process
or thread is recorded when the process or thread is finalized and its trace file is closed.
When an application uses the hpctoolkit_start and hpctoolkit_stop primitives, the
minimum and maximum time recorded for a process/thread are at the beginning and end of
its execution, which may be distant from the start/stop interval. This can cause significant
white space to appear in Trace view’s display to the left and right of the region (or regions)
of interest demarcated in an execution by start/stop calls.

12.7 Debugging

12.7.1 How do I debug HPCToolkit’s measurement?

Assume you want to debug HPCToolkit’s measurement subsystem when collecting
measurements for an application named app.

12.7.2 Tracing libmonitor

HPCToolkit’s measurement subsystem uses libmonitor for process/thread control.
To collect a debug trace of libmonitor, use either monitor-run or monitor-link, which
are located within:

<externals-install>/libmonitor/bin

Launch your application as follows:

• Dynamically linked applications:

[<mpi-launcher>] monitor-run --debug app [app-arguments]

• Statically linked applications:

Link libmonitor into app:

monitor-link <linker> -o app <linker-arguments>

Then execute app under special environment variables:

export MONITOR_DEBUG=1

[<mpi-launcher>] app [app-arguments]

12.7.3 Tracing HPCToolkit’s Measurement Subsystem

Broadly speaking, there are two levels at which a user can test hpcrun. The first level
is tracing hpcrun’s application control, that is, running hpcrun without an asynchronous
sample source. The second level is tracing hpcrun with a sample source. The key difference

120

between the two is that the former uses the --event NONE or HPCRUN_EVENT_LIST="NONE"
option (shown below) whereas the latter does not (which enables the default CPUTIME
sample source). With this in mind, to collect a debug trace for either of these levels, use
commands similar to the following:

• Dynamically linked applications:

[<mpi-launcher>] \

hpcrun --monitor-debug --dynamic-debug ALL --event NONE \

app [app-arguments]

• Statically linked applications:

Link hpcrun into app (see Section 3.1.2). Then execute app under special environment
variables:

export MONITOR_DEBUG=1

export HPCRUN_EVENT_LIST="NONE"

export HPCRUN_DEBUG_FLAGS="ALL"

[<mpi-launcher>] app [app-arguments]

Note that the *debug* flags are optional. The --monitor-debug/MONITOR_DEBUG flag
enables libmonitor tracing. The --dynamic-debug/HPCRUN_DEBUG_FLAGS flag enables
hpcrun tracing.

12.7.4 Using a debugger to inspect an execution being monitored by
HPCToolkit

If HPCToolkit has trouble monitoring an application, you may find it useful to execute
an application being monitored by HPCToolkit under the control of a debugger to observe
how HPCToolkit’s measurement subsystem interacts with the application.

HPCToolkit’s measurement subsystem is easiest to debug if you configure and build
HPCToolkit by adding the --enable-develop option as an argument to configure

when preparing to build HPCToolkit. (It is not necessary to rebuild HPCToolkit’s
hpctoolkit-externals.)

One can debug a statically-linked or a dynamically-linked applications being measured
by HPCToolkit’s measurement subsystem.

• Dynamically-linked applications. When launching an application with hpcrun, add
the --debug option to hpcrun.

• Statically-linked applications. To debug a statically-linked application that has HPC-
Toolkit’s measurement subsystem linked into it, set HPCRUN_WAIT in the environ-
ment before launching the application, e.g.

export HPCRUN_WAIT=1

export HPCRUN_EVENT_LIST="... the metric(s) you want to measure ..."

app [app-arguments]

121

There are two ways to use launch an application with a debugger when using To attach
a debugger when monitoring an application using hpcrun, add hpcrun’s --debug option

o debug hpcrun with a debugger use the following approach.

1. Launch your application. To debug hpcrun without controlling sampling signals,
launch normally. To debug hpcrun with controlled sampling signals, launch as follows:

hpcrun --debug --event REALTIME@0 app [app-arguments]

or

export HPCRUN_WAIT=1

export HPCRUN_EVENT_LIST="REALTIME@0"

app [app-arguments]

2. Attach a debugger. The debugger should be spinning in a loop whose exit is condi-
tioned by the HPCRUN_DEBUGGER_WAIT variable.

3. Set any desired breakpoints. To send a sampling signal at a particular point, make
sure to stop at that point with a one-time or temporary breakpoint (tbreak in GDB).

4. Call hpcrun_continue() or set the HPCRUN_DEBUGGER_WAIT variable to 0 and con-
tinue.

5. To raise a controlled sampling signal, raise a SIGPROF, e.g., using GDB’s command
signal SIGPROF.

122

Bibliography

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent. HPCToolkit: Tools for performance analysis of optimized parallel pro-
grams. Concurrency and Computation: Practice and Experience, 22(6):685–701, 2010.

[2] L. Adhianto, J. Mellor-Crummey, and N. R. Tallent. Effectively presenting call path
profiles of application performance. In PSTI 2010: Workshop on Parallel Software
Tools and Tool Infrastructures, in conjunction with the 2010 International Conference
on Parallel Processing, 2010.

[3] Advanced Micro Devices. ROCm Tracer Callback/Activity Library for Perfor-
mance tracing AMD GPU’s. [Accessed February 27, 2020]. https://github.com/
ROCm-Developer-Tools/roctracer.

[4] J. Anderson, Y. Liu, and J. Mellor-Crummey. Preparing for performance analysis at
exascale. In Proceedings of the 36th ACM International Conference on Supercomputing,
ICS ’22, New York, NY, USA, 2022. Association for Computing Machinery.

[5] C. Coarfa, J. Mellor-Crummey, N. Froyd, and Y. Dotsenko. Scalability analysis of
SPMD codes using expectations. In ICS ’07: Proc. of the 21st International Conference
on Supercomputing, pages 13–22, New York, NY, USA, 2007. ACM.

[6] N. Corporation. Pc sampling, 2019. [Accessed January 26, 2019].

[7] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-overhead call path profiling of
unmodified, optimized code. In Proc. of the 19th International Conference on Super-
computing, pages 81–90, New York, NY, USA, 2005. ACM.

[8] Lawrence Livermore National Laboratory. Laghos: High-order Lagrangian Hydro-
dynamics Miniapp. [Accessed February 27, 2020]. https://computing.llnl.gov/
projects/co-design/laghos.

[9] Lawrence Livermore National Laboratory. Quicksilver: A Proxy App for the Monte
Carlo Transport Code, Mercury. [Accessed February 27, 2020]. https://github.com/
LLNL/Quicksilver.

[10] Libpfm4. Libpfm4: a helper library for performance tools using hardware counters.
http://perfmon2.sf.net/, 2008.

[11] P. E. McKenney. Differential profiling. Software: Practice and Experience, 29(3):219–
234, 1999.

123

https://github.com/ROCm-Developer-Tools/roctracer
https://github.com/ROCm-Developer-Tools/roctracer
https://computing.llnl.gov/projects/co-design/laghos
https://computing.llnl.gov/projects/co-design/laghos
https://github.com/LLNL/Quicksilver
https://github.com/LLNL/Quicksilver
http://perfmon2.sf.net/

[12] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing wrong data
without doing anything obviously wrong! SIGARCH Comput. Archit. News, 37(1):265–
276, Mar. 2009.

[13] NVIDIA Corporation. CUPTI User’s Guide DA-05679-001 v10.1, 2019. https://

docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf.

[14] Rice University. HPCToolkit performance tools. http://hpctoolkit.org.

[15] N. Tallent, J. Mellor-Crummey, L. Adhianto, M. Fagan, and M. Krentel. HPCToolkit:
Performance tools for scientific computing. Journal of Physics: Conference Series,
125:012088 (5pp), 2008.

[16] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey. Scalable identification of load
imbalance in parallel executions using call path profiles. In SC ’10: Proc. of the 2010
ACM/IEEE Conference on Supercomputing, pages 1–11, Washington, DC, USA, 2010.
IEEE Computer Society.

[17] N. R. Tallent and J. Mellor-Crummey. Effective performance measurement and analysis
of multithreaded applications. In PPoPP ’09: Proc. of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 229–240, New
York, NY, USA, 2009. ACM.

[18] N. R. Tallent, J. Mellor-Crummey, and M. W. Fagan. Binary analysis for measure-
ment and attribution of program performance. In PLDI ’09: Proc. of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
441–452, New York, NY, USA, 2009. ACM. Distinguished Paper.

[19] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto, M. W. Fagan, and M. Krentel.
Diagnosing performance bottlenecks in emerging petascale applications. In SC ’09:
Proc. of the 2009 ACM/IEEE Conference on Supercomputing, pages 1–11, New York,
NY, USA, 2009. ACM.

[20] N. R. Tallent, J. M. Mellor-Crummey, M. Franco, R. Landrum, and L. Adhianto.
Scalable fine-grained call path tracing. In ICS ’11: Proc. of the 25th International
Conference on Supercomputing, pages 63–74, New York, NY, USA, 2011. ACM.

[21] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield. Analyzing lock contention
in multithreaded applications. In PPoPP ’10: Proc. of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 269–280, New
York, NY, USA, 2010. ACM.

124

https://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf
https://docs.nvidia.com/cuda/pdf/CUPTI_Library.pdf
http://hpctoolkit.org

Appendix A

Environment Variables

HPCToolkit’s measurement subsystem decides what and how to measure using infor-
mation it obtains from environment variables. This chapter describes all of the environment
variables that control HPCToolkit’s measurement subsystem.

When using HPCToolkit’s hpcrun script to measure the performance of dynamically-
linked executables, hpcrun takes information passed to it in command-line arguments and
communicates it to HPCToolkit’s measurement subsystem by appropriately setting envi-
ronment variables. To measure statically-linked executables, one first adds HPCToolkit’s
measurement subsystem to a binary as it is linked by using HPCToolkit’s hpclink script.
Prior to launching a statically-linked binary that includes HPCToolkit’s measurement
subsystem, a user must manually set environment variables.

Section A.1 describes environment variables of interest to users. Section A.3 describes
environment variables designed for use by HPCToolkit developers. In some cases, HPC-
Toolkit’s developers will ask a user to set some of the environment variables described in
Section A.3 to generate a detailed error report when problems arise.

A.1 Environment Variables for Users

HPCTOOLKIT. Under normal circumstances, there is no need to use this environment
variable. However, there are two situations where hpcrun must consult the HPCTOOLKIT

environment variable to determine the location of HPCToolkit’s top-level installation
directory to find libraries and utilities that it needs at runtime.

• If you launch the hpcrun script via a file system link, you must set the HPCTOOLKIT

environment variable to HPCToolkit’s top-level installation directory.

• Some parallel job launchers (e.g., Cray’s aprun) may copy the hpcrun script to a
different location. If this is the case, you will need to set the HPCTOOLKIT environment
variable to HPCToolkit’s top-level installation directory.

HPCRUN EVENT LIST. This environment variable is used provide a set of (event,
period) pairs that will be used to configure HPCToolkit’s measurement subsystem to
perform asynchronous sampling. The HPCRUN EVENT LIST environment variable must

125

be set otherwise HPCToolkit’s measurement subsystem will terminate execution. If an
application should run with sampling disabled, HPCRUN EVENT LIST should be set to
NONE. Otherwise, HPCToolkit’s measurement subsystem expects an event list of the form
shown below.

event1[@period1]; ...; eventN [@periodN]

As denoted by the square brackets, periods are optional. The default period is 1 million.

Flags to add an event with hpcrun: -e/--event event1[@period1]

Multiple events may be specified using multiple instances of -e/--event options.

HPCRUN TRACE. If this environment variable is set, HPCToolkit’s measurement
subsystem will collect a trace of sample events as part of a measurement database in addi-
tion to a profile. HPCToolkit’s hpctraceviewer utility can be used to view the trace after
the measurement database are processed with either HPCToolkit’s hpcprof or hpcprofmpi
utilities.

Flags to enable tracing with hpcrun: -t/--trace

HPCRUN OUT PATH If this environment variable is set, HPCToolkit’s measurement
subsystem will use the value specified as the name of the directory where output data will
be recorded. The default directory for a command command running under control of a job
launcher with as job ID jobid is hpctoolkit-command-measurements[-jobid]. (If no job ID
is available, the portion of the directory name in square brackets will be omitted. Warning:
Without a jobid or an output option, multiple profiles of the same command will be placed
in the same output directory.

Flags to set output path with hpcrun: -o/--output directoryName

HPCRUN PROCESS FRACTION If this environment variable is set, HPC-
Toolkit’s measurement subsystem will measure only a fraction of an execution’s processes.
The value of HPCRUN PROCESS FRACTION may be written as a a floating point number
or as a fraction. So, ’0.10’ and ’1/10’ are equivalent. If HPCRUN PROCESS FRACTION
is set to a value with an unrecognized format, HPCToolkit’s measurement subsystem will
use the default probability of 0.1. For each process, HPCToolkit’s measurement subsys-
tem will generate a pseudo-random value in the range [0.0, 1.0). If the generated random
number is less than the value of HPCRUN PROCESS FRACTION, then HPCToolkit
will collect performance measurements for that process.

Flags to set process fraction with hpcrun: -f/-fp/--process-fraction frac

HPCRUN DELAY SAMPLING If this environment variable is set, HPCToolkit’s
measurement subsystem will initialize itself but not begin measurement using sampling
until the program turns on sampling by calling hpctoolkit_sampling_start(). To mea-
sure only a part of a program, one can bracket that with hpctoolkit_sampling_start()

and hpctoolkit_sampling_stop(). Sampling may be turned on and off multiple times
during an execution, if desired.

Flags to delay sampling with hpcrun: -ds/--delay-sampling

126

Default
Name Value Description

MAX_COMPLETION_CALLBACK_THREADS 1000 See Note 1.

STREAMS_PER_TRACING_THREAD 4 See Note 2.

HPCRUN_CUDA_DEVICE_BUFFER_SIZE 8388608 See Note 3.

HPCRUN_CUDA_DEVICE_SEMAPHORE_SIZE 65536 See Note 4.

Note 1: OpenCL may execute callbacks on helper threads created by the OpenCL
runtime. This knob specifies the maximum number of helper threads that can be handled
by hpcrun’s OpenCL tracing implementation.
Note 2: GPU stream traces are recorded by tracing threads created by hpcrun. Reducing
the number of streams per hpcrun tracing thread may make monitoring faster, though it
will use more resources.
Note 3: Value used as CUPTI ACTIVITY ATTR DEVICE BUFFER SIZE. See
https://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html.
Note 4: Value used as CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE. See
https://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html

Table A.1: Control knob names and default values.

HPCRUN CONTROL KNOBS. hpcrun has some settings, known as control knobs,
that can be adjusted by a knowledgeable user to tune the operation of hpcrun’s measure-
ment subsystem. Names and default values of the control knobs are shown in Table A.1

Flags to set a control knob for hpcrun: -ck/--control-knob name=setting.

HPCRUN MEMLEAK PROB If this environment variable is set, HPCToolkit’s
measurement subsystem will measure only a fraction of an execution’s memory allocations,
e.g., calls to malloc, calloc, realloc, posix_memalign, memalign, and valloc. All alloca-
tions monitored will have their corresponding calls to free monitored as well. The value of
HPCRUN MEMLEAK PROB may be written as a a floating point number or as a fraction.
So, ’0.10’ and ’1/10’ are equivalent. If HPCRUN MEMLEAK PROB is set to a value with
an unrecognized format, HPCToolkit’s measurement subsystem will use the default prob-
ability of 0.1. For each memory allocation, HPCToolkit’s measurement subsystem will
generate a pseudo-random value in the range [0.0, 1.0). If the generated random number
is less than the value of HPCRUN MEMLEAK PROB, then HPCToolkit will monitor
that allocation.

Flags to set process fraction with hpcrun: -mp/--memleak-prob prob

HPCRUN RETAIN RECURSION Unless this environment variable is set, by de-
fault HPCToolkit’s measurement subsystem will summarize call chains from recursive calls
at a depth of two. Typically, application developers have no need to see performance at-
tribution at all recursion depths when an application calls recursive procedures such as

127

https://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html
https://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html

quicksort. Setting this environment variable may dramatically increase the size of calling
context trees for applications that employ bushy subtrees of recursive calls.

Flags to retain recursion with hpcrun: -r/--retain-recursion

HPCRUN MEMSIZE If this environment variable is set, HPCToolkit’s measurement
subsystem will allocate memory for measurement data in segments using the value specified
for HPCRUN MEMSIZE (rounded up to the nearest enclosing multiple of system page size)
as the segment size. The default segment size is 4M.

Flags to set memsize with hpcrun: -ms/--memsize bytes

HPCRUN LOW MEMSIZE If this environment variable is set, HPCToolkit’s mea-
surement subsystem will allocate another segment of measurement data when the amount
of free space available in the current segment is less than the value specified by
HPCRUN LOW MEMSIZE. The default for low memory size is 80K.

Flags to set low memsize with hpcrun: -lm/--low-memsize bytes

HPCTOOLKIT HPCSTRUCT CACHE If this environment variable contains the
name of a Linux directory that is readable and writable to you, hpcstruct will cache any
program structure files it computes in this directory. When invoked to analyze a binary,
hpcstruct will check if program structure information for the binary exists in the cache.
If so, hpcstruct will return the cached copy. If not, hpcstruct will compute program
structure information for the binary and record it in the cache.

A.2 Environment Variables that May Avoid a Crash

HPCRUN AUDIT FAKE AUDITOR. By default, hpcrun will use libc’s LD_AUDIT
feature to monitor dynamic library operations. For cases where using LD_AUDIT is problem-
atic (e.g. with applications or libraries that require the use of dlmopen) , hpcrun supports
an alternative fake auditor that monitors shared library operations by wrapping dlopen and
dlclose instead. This variable will be set to 1 if a fake auditor is used. If LD_AUDIT is not
causing your program to crash, we don’t recommend using the fake auditor as it may cause
your application or shared libraries it loads to ignore any RUNPATH set in their binaries.

Flag to select the fake auditor with hpcrun: --disable-auditor.

HPCRUN AUDIT DISABLE PLT CALL OPT. By default, hpcrun will use
libc’s LD_AUDIT feature to monitor dynamic library operations. The LD_AUDIT facility
has the unfortunate behavior of intercepting each call to a shared library. Each call to a
shared library is dispatched through the Procedure Linkage Table (PLT). We have observed
that allowing the LD_AUDIT facility to intercept each call to a shared library is costly: on
x86 64 we measured a slowdown of 68× for a call to an empty shared library routine.

To avoid this overhead, hpcrun sidesteps LD_AUDIT’s monitoring of a load module’s calls
to a shared library routine by allowing the address of the routine to be cached in the load
module’s Global Offset Table (GOT). The mechanism for this optimization is complex. If

128

you suspect that this optimization is causing your program to crash, this optimization can
be disabled. If your program is not crashing, don’t even consider adjusting this!

Flag to disable optimization of PLT calls when using LD_AUDIT to monitor shared library
operations with hpcrun: --disable-auditor-got-rewriting.

A.3 Environment Variables for Developers

HPCRUN WAIT If this environment variable is set, HPCToolkit’s measurement sub-
system will spin wait for a user to attach a debugger. After attaching a debugger, a user
can set breakpoints or watchpoints in the user program or HPCToolkit’s measurement
subsystem before continuing execution. To continue after attaching a debugger, use the
debugger to set the program variable DEBUGGER WAIT=0 and then continue. Note:
Setting HPCRUN WAIT can only be cleared by a debugger if HPCToolkit has been
built with debugging symbols. Building HPCToolkit with debugging symbols requires
configuring HPCToolkit with –enable-develop.

HPCRUN DEBUG FLAGS HPCToolkit supports a multitude of debugging flags
that enable a developer to log information about HPCToolkit’s measurement subsystem as
it records sample events. If HPCRUN DEBUG FLAGS is set, this environment variable
is expected to contain a list of tokens separated by a space, comma, or semicolon. If a
token is the name of a debugging flag, the flag will be enabled, it will cause HPCToolkit’s
measurement subsystem to log messages guarded with that flag as an application executes.
The complete list of dynamic debugging flags can be found in HPCToolkit’s source code in
the file src/tool/hpcrun/messages/messages.flag-defns. A special flag value “ALL” enables
all flags. Note: not all debugging flags are meaningful on all architectures.

Caution: turning on debugging flags will typically result in voluminous log messages, which
will typically will dramatically slow measurement of the execution under study.

Flags to set debug flags with hpcrun: -dd/--dynamic-debug flag

HPCRUN ABORT TIMEOUT If an execution hangs when profiled with HPC-
Toolkit’s measurement subsystem, the environment variable HPCRUN ABORT TIMEOUT
can be used to specify the number of seconds that an application should be allowed to exe-
cute. After executing for the number of seconds specified in HPCRUN ABORT TIMEOUT,
HPCToolkit’s measurement subsystem will forcibly terminate the execution and record a
core dump (assuming that core dumps are enabled) to aid in debugging.

Caution: for a large-scale parallel execution, this might cause a core dump for each process,
depending upon the settings for your system. Be careful!

HPCRUN FNBOUNDS CMD For dynamically-linked executables, this environment
variable must be set to the full path of a copy of HPCToolkit’s hpcfnbounds utility. There
are presently two versions of this utility. One, known as hpcfnbounds, analyzes program
load modules (the executable and shared libraries) using Dyninst to recover a table of
addresses that represent the beginning of each function. A second version of the tool,

129

known as hpcfnbounds2, was designed to compute the same set of addresses for a load
module using only a lightweight inspection of the load module’s symbol table and DWARF
information. hpcfnbounds2 is over a factor of ten faster and uses over a factor of 10 less
memory than the original. hpcfnbounds2 is the default. If hpcfnbounds2 delivers an
unsatisfactory result, a user can employ hpcfnbounds instead by setting this environment
variable using the --fnbounds command line argument to hpcrun.

130

	Introduction
	HPCToolkit Overview
	Asynchronous Sampling and Call Path Profiling
	Recovering Static Program Structure
	Reducing Performance Measurements
	Presenting Performance Measurements

	Quick Start
	Guided Tour
	Compiling an Application
	Measuring Application Performance
	Recovering Program Structure
	Analyzing Measurements & Attributing Them to Source Code
	Presenting Performance Measurements for Interactive Analysis
	Effective Performance Analysis Techniques

	Additional Guidance

	Effective Strategies for Analyzing Program Performance
	Monitoring High-Latency Penalty Events
	Computing Derived Metrics
	Pinpointing and Quantifying Inefficiencies
	Pinpointing and Quantifying Scalability Bottlenecks
	Scalability Analysis Using Expectations

	Monitoring Dynamically-linked Applications with hpcrun
	Using hpcrun
	If hpcrun causes your application to fail

	Hardware Counter Event Names
	Sample Sources
	Linux perf_events
	PAPI
	REALTIME and CPUTIME
	IO
	MEMLEAK

	Experimental Python Support
	Known Limitations

	Process Fraction
	Starting and Stopping Sampling
	Environment Variables for hpcrun
	Cray System Specific Notes

	Monitoring Statically Linked Applications with hpclink
	Linking with hpclink
	Using hpclink when gprof instrumentation is present

	Running a Statically Linked Binary
	Troubleshooting

	Monitoring MPI Applications
	Running and Analyzing MPI Programs
	Building and Installing HPCToolkit

	Measurement and Analysis of GPU-accelerated Applications
	GPU Performance Measurement Substrate
	Profiling GPU Activities
	Tracing GPU Activities

	NVIDIA GPUs
	Performance Measurement of CUDA Programs
	PC Sampling on NVIDIA GPUs
	Attributing Measurements to Source Code for NVIDIA GPUs
	GPU Calling Context Tree Reconstruction

	AMD GPUs
	Intel GPUs
	Performance Measurement of OpenCL Programs

	Measurement and Analysis of OpenMP Multithreading
	Monitoring OpenMP on the Host
	Monitoring OpenMP Offloading on GPUs
	NVIDIA GPUs
	AMD GPUs
	Intel GPUs

	Analyzing Performance Data with hpcviewer
	Launching
	Profile View
	Panes
	Source Pane
	Navigation Pane
	Metric Pane

	Understanding Metrics
	How Metrics are Computed
	Example

	Derived Metrics
	Formulae
	Examples
	Creating Derived Metrics

	Metrics in Execution-context level
	Plot Graphs
	Thread View

	Filtering Tree Nodes
	Convenience Features
	Editor Pane
	Metric Pane

	Trace view
	Main View
	Depth View
	Summary View
	Call Stack View
	Mini Map View

	Menus
	File
	Filter
	View
	Help

	Limitations

	Known Issues
	Inaccurate attribution of performance information can occur on Sapphire Rapids processors with HPCToolkit
	We observed bad generated code for Dyninst using gcc 11.2.0 on Aurora
	When monitoring applications that use ROCm 6.0.0, using LD_AUDIT in hpcrun may cause it to fail to elide OpenMP runtime frames
	When using Intel GPUs, hpcrun may report that substantial time is spent in a partial call path consisting of only an unknown procedure
	hpcrun reports partial call paths for code executed by a constructor prior to entering main
	hpcrun may fail to measure a program execution on a CPU with hardware performance counters
	hpcrun may associate several profiles and traces with rank 0, thread 0
	hpcrun sometimes enables writing of read-only data
	A confusing label for GPU theoretical occupancy
	Deadlock when using Darshan

	FAQ and Troubleshooting
	Instrumenting Statically-linked Applications
	General Measurement Failures
	Unable to find HPCTOOLKIT root directory
	Profiling setuid programs
	Problems loading dynamic libraries
	Problems caused by gprof instrumentation

	Measurement Failures using NVIDIA GPUs
	Deadlock while monitoring a program that uses IBM Spectrum MPI and NVIDIA GPUs
	Ensuring permission to use GPU performance counters
	Avoiding the error cudaErrorUnknown
	Avoiding the error CUPTI_ERROR_NOT_INITIALIZED
	Avoiding the error CUPTI_ERROR_HARDWARE_BUSY
	Avoiding the error CUPTI_ERROR_UNKNOWN

	General Measurement Issues
	How do I choose sampling periods?
	Why do I see partial unwinds?
	Measurement with HPCToolkit has high overhead! Why?
	Some of my syscalls return EINTR
	My application spends a lot of time in C library functions with names that include mcount

	Problems Recovering Loops in NVIDIA GPU binaries
	Graphical User Interface Issues
	Fail to run hpcviewer: executable launcher was unable to locate its companion shared library
	Launching hpcviewer is very slow on Windows
	Mac only: hpcviewer runs on Java X instead of ``Java 11"
	When executing hpcviewer, it complains cannot create ``Java Virtual Machine"
	hpcviewer fails to launch due to java.lang.NoSuchMethodError exception.
	hpcviewer fails due to java.lang.OutOfMemoryError exception.
	hpcviewer writes a long list of Java error messages to the terminal!
	hpcviewer attributes performance information only to functions and not to source code loops and lines! Why?
	hpcviewer hangs trying to open a large database! Why?
	hpcviewer runs glacially slowly! Why?
	hpcviewer does not show my source code! Why?
	hpcviewer's reported line numbers do not exactly correspond to what I see in my source code! Why?
	hpcviewer claims that there are several calls to a function within a particular source code scope, but my source code only has one! Why?
	Trace view shows lots of white space on the left. Why?

	Debugging
	How do I debug HPCToolkit's measurement?
	Tracing libmonitor
	Tracing HPCToolkit's Measurement Subsystem
	Using a debugger to inspect an execution being monitored by HPCToolkit

	Environment Variables
	Environment Variables for Users
	Environment Variables that May Avoid a Crash
	Environment Variables for Developers

